Detecting low blood concentrations in joints using T1 and T2 mapping at 1.5, 3, and 7 T: an in vitro study
- PMID: 34853955
- PMCID: PMC8636530
- DOI: 10.1186/s41747-021-00251-z
Detecting low blood concentrations in joints using T1 and T2 mapping at 1.5, 3, and 7 T: an in vitro study
Abstract
Background: Intra-articular blood causes irreversible joint damage, whilst clinical differentiation between haemorrhagic joint effusion and other effusions can be challenging. An accurate non-invasive method for the detection of joint bleeds is lacking. The aims of this phantom study were to investigate whether magnetic resonance imaging (MRI) T1 and T2 mapping allows for differentiation between simple and haemorrhagic joint effusion and to determine the lowest blood concentration that can be detected.
Methods: Solutions of synovial fluid with blood concentrations ranging from 0 to 100% were scanned at 1.5, 3, and 7 T. T1 maps were generated with an inversion recovery technique and T2 maps from multi spin-echo sequences. In both cases, the scan acquisition times were below 5 min. Regions of interest were manually drawn by two observers in the obtained T1 and T2 maps for each sample. The lowest detectable blood concentration was determined for all field strengths.
Results: At all field strengths, T1 and T2 relaxation times decreased with higher blood concentrations. The lowest detectable blood concentrations using T1 mapping were 10% at 1.5 T, 25% at 3 T, and 50% at 7 T. For T2 mapping, the detection limits were 50%, 5%, and 25%, respectively.
Conclusions: T1 and T2 mapping can detect different blood concentrations in synovial fluid in vitro at clinical field strengths. Especially, T2 measurements at 3 T showed to be highly sensitive. Short acquisition times would make these methods suitable for clinical use and therefore might be promising tools for accurate discrimination between simple and haemorrhagic joint effusion in vivo.
Keywords: Haemarthrosis; Image interpretation (computer-assisted); Magnetic resonance imaging; Phantoms (imaging); Synovial fluid.
© 2021. The Author(s).
Conflict of interest statement
The authors of this manuscript declare relationships with the following companies: WF has received research grants from NovoNordisk and Pfizer which were paid to the institution. LV received a research grant from CSL Behring which was paid to the institution and reports to be in the advisory boards of Swedish Orphan Biovitrum BV (sobi), Tremeau Pharmaceuticals and CSL Behring. KF has received speaker's fees from Bayer, Baxter/Shire, Biotest, CSL Behring, Octapharma, Pfizer, NovoNordisk; performed consultancy for Baxter/Shire, Biogen, CSL-Behring, Freeline, NovoNordisk, Pfizer, Roche and SOBI; and has received research support from Bayer, Pfizer, Baxter/Shire, and Novo Nordisk. PJ reported to perform consultancy for Sanifit and Inozyme. The Radiology department of the University Medical Center Utrecht received research support from Philips.
Figures




References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical