A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia
- PMID: 34855215
- DOI: 10.1111/jnc.15551
A novel synaptopathy-defective synaptic vesicle protein trafficking in the mutant CHMP2B mouse model of frontotemporal dementia
Abstract
Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.
Keywords: CHMP2B; ESCRT; endosome; frontotemporal dementia; lysosome; synaptic vesicle.
© 2021 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Similar articles
-
Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology.Acta Neuropathol. 2015 Oct;130(4):511-23. doi: 10.1007/s00401-015-1475-3. Epub 2015 Sep 10. Acta Neuropathol. 2015. PMID: 26358247 Free PMC article.
-
TMEM106B, a frontotemporal lobar dementia (FTLD) modifier, associates with FTD-3-linked CHMP2B, a complex of ESCRT-III.Mol Brain. 2015 Dec 10;8:85. doi: 10.1186/s13041-015-0177-z. Mol Brain. 2015. PMID: 26651479 Free PMC article.
-
Neuroprotective activity of ursodeoxycholic acid in CHMP2BIntron5 models of frontotemporal dementia.Neurobiol Dis. 2020 Oct;144:105047. doi: 10.1016/j.nbd.2020.105047. Epub 2020 Aug 13. Neurobiol Dis. 2020. PMID: 32801000 Free PMC article.
-
Frontotemporal dementia caused by CHMP2B mutations.Curr Alzheimer Res. 2011 May;8(3):246-51. doi: 10.2174/156720511795563764. Curr Alzheimer Res. 2011. PMID: 21222599 Free PMC article. Review.
-
The role of CHMP2BIntron5 in autophagy and frontotemporal dementia.Brain Res. 2016 Oct 15;1649(Pt B):151-157. doi: 10.1016/j.brainres.2016.02.051. Epub 2016 Mar 10. Brain Res. 2016. PMID: 26972529 Free PMC article. Review.
Cited by
-
Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis.Brain. 2024 Jul 5;147(7):2289-2307. doi: 10.1093/brain/awae074. Brain. 2024. PMID: 38451707 Free PMC article. Review.
-
CHMP2B promotes CHMP7 mediated nuclear pore complex injury in sporadic ALS.Acta Neuropathol Commun. 2024 Dec 21;12(1):199. doi: 10.1186/s40478-024-01916-7. Acta Neuropathol Commun. 2024. PMID: 39709457 Free PMC article.
-
Keeping synapses in shape: degradation pathways in the healthy and aging brain.Neuronal Signal. 2022 Jun 15;6(2):NS20210063. doi: 10.1042/NS20210063. eCollection 2022 Jun. Neuronal Signal. 2022. PMID: 35813265 Free PMC article. Review.
-
Synaptopathy in CHMP2B frontotemporal dementia highlights the synaptic vesicle cycle as a therapeutic target.Neural Regen Res. 2023 Feb;18(2):315-316. doi: 10.4103/1673-5374.343905. Neural Regen Res. 2023. PMID: 35900412 Free PMC article. No abstract available.
-
Nuclear pore dysfunction and disease: a complex opportunity.Nucleus. 2024 Dec;15(1):2314297. doi: 10.1080/19491034.2024.2314297. Epub 2024 Feb 21. Nucleus. 2024. PMID: 38383349 Free PMC article. Review.
References
REFERENCES
-
- Atluri, P. P., & Ryan, T. A. (2006). The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. Journal of Neuroscience, 26, 2313-2320. https://doi.org/10.1523/JNEUROSCI.4425-05.2006
-
- Bonnycastle, K., Davenport, E. C., & Cousin, M. A. (2020). Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. Journal of Neurochemistry. https://doi.org/10.1111/jnc.15035
-
- Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. Journal of Neuroscience, 22, 8797-8807.
-
- Chanaday, N. L., Cousin, M. A., Milosevic, I., Watanabe, S., & Morgan, J. R. (2019). The synaptic vesicle cycle revisited: New insights into the modes and mechanisms. Journal of Neuroscience, 39, 8209-8216. https://doi.org/10.1523/JNEUROSCI.1158-19.2019
-
- Cheung, G., Jupp, O. J., & Cousin, M. A. (2010). Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. Journal of Neuroscience, 30, 8151-8161. https://doi.org/10.1523/JNEUROSCI.0293-10.2010
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases