Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 15:610:751-765.
doi: 10.1016/j.jcis.2021.11.118. Epub 2021 Nov 24.

Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis

Affiliations

Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis

Xu Shi et al. J Colloid Interface Sci. .

Abstract

Fenton-like catalysts have usually superior catalytic activities, however, some drawbacks of ion leaching and difficult-to-recovery limit their applications. In this work, a hierarchical porous Fe3O4/Co3S4 catalyst was fabricated via a simple phase change reaction to overcome these shortcomings. The introduced iron cooperates with cobalt achieving high-efficiency activation of peroxymonosulfate (PMS) to eliminate Rhodamine B (RhB). The results showed that 0.05 g/L Fe3O4/Co3S4 and 1 mM PMS could quickly remove 100% of 200 mg/L RhB within 20 min, and the removal rate of RhB remained above 82% after 5 cycles. Moreover, the as-prepared Fe3O4/Co3S4 possessed a great magnetic separation capacity and good stability of low metal leaching dose. Radical quenching experiments and electron paramagnetic resonance (EPR) techniques proved that sulfate radicals (SO4•-) were the dominant reactive oxygen species responding for RhB degradation. X-ray photoelectron spectroscopy (XPS) pointed out that the synergism of sulfur promoted the cycling of Co3+/Co2+ and Fe3+/Fe2+, boosting the electron transfer between Fe3O4/Co3S4 and PMS. Moreover, the degradation pathways of RhB were deduced by combining liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations. The toxicities of RhB and its intermediates were evaluated as well, which provided significant assistance in the exploration of their ecological risks.

Keywords: DFT calculation; Fe(3)O(4)/Co(3)S(4); PMS activation; RhB degradation; Toxicity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources