Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;67(5):253-259.
doi: 10.1038/s10038-021-00995-x. Epub 2021 Dec 3.

Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome

Affiliations

Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome

Hammal Khan et al. J Hum Genet. 2022 May.

Abstract

Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.2-q13.1, causes the CLS. The gene LRP4 encodes a low-density lipoprotein receptor-related protein-4, which mediates SOST-dependent inhibition of bone formation and Wnt signaling. In the study, presented here, three families of Pakistani origin, segregating CLS in the autosomal recessive manner were clinically and genetically characterized. In two families (A and B), microsatellite-based homozygosity mapping followed by Sanger sequencing identified a novel homozygous missense variant [NM_002334.3: c.295G>C; p.(Asp99His)] in the LRP4 gene. In the third family C, exome sequencing revealed a second novel homozygous missense variant [NM_002334.3: c.1633C>T; p.(Arg545Trp)] in the same gene. To determine the functional relevance of these variants, we tested their ability to inhibit canonical WNT signaling in a luciferase assay. Wild type LRP4 was able to inhibit LRP6-dependent WNT signaling robustly. The two mutants p.(Asp99His) and p.(Arg545Trp) inhibited WNT signaling less effectively, suggesting they reduced LRP4 function.

PubMed Disclaimer

References

    1. Tian J, Shao J, Liu C, Hou HY, Chou CW, Shboul M, et al. Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged–Notch signaling in fin and limb development. Cell Mol Life Sci. 2019;76:163–78. - DOI
    1. Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, et al. LRP4 mutations alter Wnt/β-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet. 2010;86:696–706. - DOI
    1. Ohkawara B, Cabrera-Serrano M, Nakata T, Milone M, Asai N, Ito K, et al. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Hum Mol Genet. 2014;23:1856–68. - DOI
    1. Xiong L, Jung JU, Wu H, Xia WF, Pan JX, Shen C, et al. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption. Nat Acad Sci. 2015;112:3487–92. - DOI
    1. Dietrich MF, Van Der Weyden L, Prosser HM, Bradley A, Herz J, Adams DJ. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo. PLoS ONE. 2010;5:e9960. - DOI

Substances

Supplementary concepts

LinkOut - more resources