Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec;63(12):2038-2042.
doi: 10.1111/jipb.13199.

Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene

Affiliations

Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene

Qin Feng et al. J Integr Plant Biol. 2021 Dec.

Abstract

Efficient genetic transformation has the potential to advance research and breeding in watermelon (Citrullus lanatus), but regeneration from tissue culture remains challenging. Previous work showed that expressing a fusion of two interacting transcription factors, GROWTH-REGULATING FACTOR4 (GRF4) and GRF-INTERACTING FACTOR1 (GIF1), improved regeneration in wheat (Triticum aestivum). By overexpressing a chimeric fusion of ClGRF4 and ClGIF1, we achieved highly efficient transformation in watermelon. Mutating the mi396 microRNA target site in ClGRF further boosted the transformation efficiency up to 67.27% in a genotype-independent manner. ClGRF4-GIF1 can also be combined with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing tools to achieve highly efficient gene editing in watermelon, which we used to successfully create diploid seedless watermelon. This research thus puts forward a powerful transformation tool for future watermelon research and breeding.

Keywords: GIF; GRF; gene editing; genetic transforamtion; watermelon.

PubMed Disclaimer

References

REFERENCES

    1. Choi, P.S., Soh, W.Y., Kim, Y.S., Yoo, O.J., and Liu, J.R. (1994). Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep. 13: 344-348.
    1. Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., and Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38: 1274-1279.
    1. Ellul, P., Rios, G., Atares, A., Roig, L.A., Serrano, R., and Moreno, V. (2003). The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor. Appl. Genet. 107: 462-469.
    1. Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67: 16-37.
    1. Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W.J., Zhang, H., Zheng, Y., Mao, L., Ren, Y., Wang, Z., Min, J., Guo, X., Murat, F., Ham, B.K., Zhang, Z., Gao, S., Huang, M., Xu, Y., Zhong, S., Bombarely, A., Mueller, L.A., Zhao, H., He, H., Zhang, Y., Zhang, Z., Huang, S., Tan, T., Pang, E., Lin, K., Hu, Q., Kuang, H., Ni, P., Wang, B., Liu, J., Kou, Q., Hou, W., Zou, X., Jiang, J., Gong, G., Klee, K., Schoof, H., Huang, Y., Hu, X., Dong, S., Liang, D., Wang, J., Wu, K., Xia, Y., Zhao, X., Zheng, Z., Xing, M., Liang, X., Huang, B., Lv, T., Wang, J., Yin, Y., Yi, H., Li, R., Wu, M., Levi, A., Zhang, X., Giovannoni, J.J., Wang, J., Li, Y., Fei, Z., and Xu, Y. (2013). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45: 51-58.

LinkOut - more resources