Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract
- PMID: 34863290
- PMCID: PMC8643021
- DOI: 10.1186/s13287-021-02654-6
Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract
Abstract
Background: Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction.
Methods: Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling.
Results: 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining vascular barrier, reducing reactive oxygen species level, and increasing migration capacity.
Conclusion: This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.
Keywords: e-cigarettes; endothelial dysfunction; fatty acid oxidation; iPSC-ECs; lncRNAs.
© 2021. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures







References
-
- Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L, Perri L, et al. Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest. 2016;150(3):606–612. - PubMed
-
- Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F, et al. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods. 2016;26(6):465–476. - PubMed
-
- Anderson C, Majeste A, Hanus J, Wang S. E-cigarette aerosol exposure induces reactive oxygen species, DNA damage, and cell death in vascular endothelial cells. Toxicol Sci. 2016;154(2):332–340. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical