Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 5;20(1):175.
doi: 10.1186/s12944-021-01604-8.

The impact of sleep apnea syndrome on the altered lipid metabolism and the redox balance

Affiliations

The impact of sleep apnea syndrome on the altered lipid metabolism and the redox balance

Branislav Kollar et al. Lipids Health Dis. .

Abstract

Background: Obstructive sleep apnea (OSA) is a disorder with a significant risk for cardiovascular diseases. Dyslipidemia and redox imbalance belong to potential mechanisms linking OSA with the development of vascular diseases. The main aim of this study was the evaluation of the presence of lipid abnormalities in OSA patients, focusing on small dense low-density lipoprotein (LDL) and high-density lipoprotein (HDL) subfractions and determination of the redox imbalance by evaluating the marker of oxidative damage to plasma lipids - lipoperoxides.

Methods: The study included 15 male subjects with polysomnographically confirmed OSA and 16 male healthy controls. Plasma levels of total cholesterol, LDL and HDL and their subfractions, triacylglycerols and lipoperoxides were determined in all study individuals. Plasma LDL and HDL subfractions were separated by the Lipoprint system which is a polyacrylamide gel electrophoresis. Lipoperoxide levels were determined spectrophotometrically.

Results: OSA patients had significantly higher triacylglycerols, total cholesterol and LDL-cholesterol compared to healthy controls. HDL cholesterol was not significantly different. Of the LDL and HDL subfractions, OSA patients had significantly lower levels of atheroprotective LDL1 and large HDL subfractions and significantly higher levels of atherogenic small dense LDL3-7 and HDL8-10 subfractions. Lipoperoxide levels in patients with OSA were significantly elevated compared to healthy individuals.

Conclusion: The lipoprotein pro-atherogenic phenotype was found in individuals with OSA characterized by increased levels of atherogenic lipoprotein subfractions and reduced levels of atheroprotective subfractions. In addition, a plasma redox imbalance was found in patients with OSA compared to controls by detecting higher oxidative damage to lipids. Abnormalities in lipoprotein levels in patients with OSA, as well as the redox imbalance, could lead to an acceleration of the atherosclerotic process in predisposed individuals and thus represent a significant risk factor for vasular diseases.

Keywords: Dyslipoproteinemia; HDLsubfractions; LDL subfractions; Lipoperoxides; Obstructive sleep apnea (OSA).

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, O'Connor GT, Rapoport DM, Redline S, Resnick HE, Robbins JA, Shahar E, Unruh ML, Samet JM. Sleep-disordered breathing andmortality:a prospective cohort study. PLoS Med. 2009;6(8):e1000132. doi: 10.1371/journal.pmed. - DOI - PMC - PubMed
    1. Dempsey JA, Veasey SC, Morgan BJ, O'donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112. doi: 10.1152/physrev.00043.2008. - DOI - PMC - PubMed
    1. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin JL, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–698. doi: 10.1016/S2213-2600(19)30198-5. - DOI - PMC - PubMed
    1. Bikov A, Meszaros M, Kunos L, Negru AG, Frent SM, Mihaicuta S. Atherogenic index of plasma in obstructive sleep Apnoea. J Clin Med. 2021;10(3):417. doi: 10.3390/jcm10030417. - DOI - PMC - PubMed
    1. Drager LF, Polotsky VY, O'donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2015;309:H1101–H1111. doi: 10.1152/ajpheart.00094.2015. - DOI - PMC - PubMed