Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 15:610:994-1004.
doi: 10.1016/j.jcis.2021.11.156. Epub 2021 Nov 26.

pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane

Affiliations

pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane

Jianhui Wu et al. J Colloid Interface Sci. .

Abstract

Hypothesis: Waterborne polyurethane (WPU) is a common colloidal dispersion that can aggregate in the aqueous phase to form nanoparticles with hydrophobic polyurethane chains as the core and hydrophilic ionic groups as the shell. Considering their structure and pH-responsive functional groups, WPU nanoparticles could be ideal particulate emulsifiers for preparing pH-responsive Pickering high internal phase emulsions (HIPEs).

Experiments: A series of anionic WPU with different content of 2,2-bis(hydroxymethyl)propionic acid (DMPA) side chains were synthesized via a polyaddition reaction. The DMPA content, size, ζ-potential, and interfacial behaviors of WPU were then investigated. Furthermore, the effects of particle concentration, internal phase fraction (ϕ), oil type, and pH values on the Pickering HIPEs' morphology, stability, and rheological behaviors were systematically studied. Finally, we demonstrated the emulsification-demulsification process of WPU-stabilized Pickering HIPEs and discussed its mechanism.

Findings: Oil-in-water (O/W) Pickering HIPEs with tailored morphology and excellent pH-responsiveness were prepared from anionic WPU nanoparticles. The WPU concentration, ϕ, and oil type had a large impact on the formation and mean droplet size of the WPU-stabilized emulsions. Rheology analysis demonstrated that the strictly limited movement of droplets endowed the WPU-stabilized HIPEs with high stability, shear sensitivity, and excellent thixotropic recovery. By simply changing the aqueous-phase pH value, the WPU-stabilized HIPEs could undergo more than ten emulsification-demulsification cycles, as the physical and interfacial properties of WPU nanoparticles were pH-dependent. The excellent performance of the WPU-stabilized pH-responsive Pickering HIPEs exhibited their potential practical applications, such as for oil transportation and recovery, emulsion polymerization, and heterogeneous catalysis.

Keywords: Pickering high internal phase emulsions; Recyclable; Waterborne polyurethane; pH-responsive.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources