Application of high-field 1H-NMR spectroscopy for the study of perifused amphibian and excised mammalian muscles
- PMID: 3486676
- DOI: 10.1016/0167-4889(86)90177-1
Application of high-field 1H-NMR spectroscopy for the study of perifused amphibian and excised mammalian muscles
Abstract
Frog sartorius and gastrocnemius muscles were perifused at 20 degrees C, the intracellular pH (pHi) and the concentration of phosphocreatine were determined in the resting muscle by 1H-NMR spectroscopy at 470 MHz; values of pHi = 7.31 +/- 0.05 (n = 7) and concentration of phosphocreatine = 20.4 +/- 1.1 mumol/g wet wt. (n = 6) were found. The hydrolysis of phosphocreatine and the simultaneous increase in lactate upon perifusion with 10 mM caffeine (in Ringer's solution) was followed with a time resolution of 1 min. Lactate increased at a rate of 1.0 mumol/g per min, but no pHi change was recorded during the time monitored. The lower limit for the buffering capacity of the muscle cytosol was estimated to be 16.7 mumol/g muscle per pH unit from the uncertainty in pHi determination (+/- 0.03 pH units) and from the amount of lactate produced and phosphocreatine hydrolyzed. Changes in pHi, lactate concentration and fatty acyl chain intensity were monitored by 1H-NMR spectroscopy at 361 MHz in ischemic rat skeletal muscle, excised and stored at 20 degrees C. The resonances in the 1H-NMR spectrum of a human skeletal muscle perchloric acid extract are reported and tentatively assigned.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources