Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 17:12:765528.
doi: 10.3389/fimmu.2021.765528. eCollection 2021.

Potential Association Between Dietary Fibre and Humoral Response to the Seasonal Influenza Vaccine

Affiliations

Potential Association Between Dietary Fibre and Humoral Response to the Seasonal Influenza Vaccine

Alissa Cait et al. Front Immunol. .

Abstract

Influenza vaccination is an effective public health measure to reduce the risk of influenza illness, particularly when the vaccine is well matched to circulating strains. Notwithstanding, the efficacy of influenza vaccination varies greatly among vaccinees due to largely unknown immunological determinants, thereby dampening population-wide protection. Here, we report that dietary fibre may play a significant role in humoral vaccine responses. We found dietary fibre intake and the abundance of fibre-fermenting intestinal bacteria to be positively correlated with humoral influenza vaccine-specific immune responses in human vaccinees, albeit without reaching statistical significance. Importantly, this correlation was largely driven by first-time vaccinees; prior influenza vaccination negatively correlated with vaccine immunogenicity. In support of these observations, dietary fibre consumption significantly enhanced humoral influenza vaccine responses in mice, where the effect was mechanistically linked to short-chain fatty acids, the bacterial fermentation product of dietary fibre. Overall, these findings may bear significant importance for emerging infectious agents, such as COVID-19, and associated de novo vaccinations.

Keywords: fibre; influenza; microbiome; short chain fatty acids (SCFA); vaccine.

PubMed Disclaimer

Conflict of interest statement

SE and GW were employed by Food Savvy. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Influenza vaccine responses are determined by vaccination history. (A) Schematic overview of sampling timepoints relative to the vaccination event. (B) Histogram summarizes the number of seasonal-influenza vaccines received self-reported by participants at least 4 years prior to the study (2012-2015 inclusive; or from 2011-2015 inclusive). (C) Principal component analysis of both HAI and NAI seroconversion of each participant. Participants are coloured according to their responder category. (D) Heatmap showing relationship between seroconversion and year of most recent seasonal-influenza vaccines received by participants in the 4 years prior to the study (2012-2015), and 2011 or earlier. Hemagglutinin (HAI) seroconversion to each of the influenza subtypes contained in the vaccine is shown. (E) Relationship between seroconversion and vaccine history. Hemagglutinin (HAI) and Neuraminidase (NAI) seroconversions are shown, as is the response to each of the influenza subtypes contained in the vaccine.
Figure 2
Figure 2
A unique microbiome signature is correlated with the vaccine response to each of the influenza strains. (A) Non-metric multidimensional scaling (NMDS) of the microbiome for each participant. NMDS is faceted by vaccination history (naïve vs. previously vaccinated) and by timepoint [pre-vaccine (D0) or 25 - 28 days post vaccine (D28)]. Colour of each point reflects the responder category of the participant. (B) Shannon index of alpha diversity. Plot is faceted by vaccination history (naïve vs. previously vaccinated) and by timepoint (pre-vaccine or 28 days post vaccine). Colour of each point reflects the responder category of the participant. (C) Correlation analysis showing the strength of Spearman correlation of operational taxonomic units (OTUs) with HAI seroconversion in individuals previously naïve to influenza vaccination. Each point is one OTU. Colour of each point represents the class level taxonomic assignment of each OTU. OTUs are organized (x-axis) by genus, or by the lowest level of taxonomic hierarchy determined. Size of each point corresponds to -log (P value). Only OTUs with a correlation coefficient > |0.15| and an adjusted P value < 0.05 are shown. Plot is faceted by influenza strain: H1N1 (top), H3N2 (bottom). (D) Scatter-plot showing the correlation between the OTU with the strongest correlation with H1N1 seroconversion (Faecalibacterium prausnitzii; top) and H3N2 seroconversion (identified to the family level as Lachnospiraceae; bottom).
Figure 3
Figure 3
Fiber intake correlates with influenza vaccine responses. (A) Correlation analysis showing strength of Spearman correlation of operational taxonomic units (OTUs) with average dietary fibre intake. Each point is one OTU. Colour of each point represents the class level taxonomic assignment of each OTU. OTUs are organized (x-axis) by genus, or lowest level of taxonomic hierarchy determined. Size of each point corresponds to -log (P value). Only OTUs with an adjusted P value < 0.05 are shown. (B) Correlation analysis of average dietary fibre intake with Hemagglutinin (HAI) seroconversion. Colour represents the number of self-reported seasonal influenza vaccinations each participant received in the last 5 years. On the left all participants are analysed. On the right only participants naïve to previous influenza vaccination are analysed. Grey shadow represents 95% confidence interval.
Figure 4
Figure 4
Dietary fibre and fibre fermentation are required for optimal antibody response in a mouse model of influenza vaccination. 28 days after receiving the trivalent influenza vaccine (TIV), serum levels of TIV-specific IgG were assessed from mice allocated to various fibre interventions. (A) TIV-specific IgG in the serum from mice fed a control or zero fibre diet. (B) TIV-specific IgG from mice on a control diet, with (abx) or without (control) the addition of an antibiotic cocktail to the drinking water. (C) TIV-specific IgG from mice on a zero-fibre diet, a high fibre diet, or a zero fibre diet supplemented with a cocktail of short chain fatty acids containing butyrate, acetate, and propionate (D) TIV-specific IgG from mice on a control diet supplemented with acetate, butyrate, or propionate. Data from (A, C) are from two independent experiments; samples from replicate groups are combined for analysis [(A) n=5/treatment/experiment (B) n=3-4/treatment/experiment]. Data from (B, D) are representative from 2 independent experiments (n = 5/treatment/experiment). Error bars in all panels show standard error of the mean. *P < 0.05. **P < 0.01. ***P < 0.001. BAP, butyrate, acetate, and propionate.

References

    1. Lynn DJ, Benson SC, Lynn MA, Pulendran B. Modulation of Immune Responses to Vaccination by the Microbiota: Implications and Potential Mechanisms. Nat Rev Immunol (2021) p:1–14. doi: 10.1038/s41577-021-00554-7 - DOI - PMC - PubMed
    1. de Jong SE, Olin A, Pulendran B. The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host Microbe (2020) 28(2):169–79. doi: 10.1016/j.chom.2020.06.014 - DOI - PMC - PubMed
    1. Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, et al. . TLR5-Mediated Sensing of Gut Microbiota is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity (2014) 41(3):478–92. doi: 10.1016/j.immuni.2014.08.009 - DOI - PMC - PubMed
    1. Lynn MA, Tumes DJ, Choo JM, Sribnaia A, Blake SJ, Leong LEX, et al. . Early-Life Antibiotic-Driven Dysbiosis Leads to Dysregulated Vaccine Immune Responses in Mice. Cell Host Microbe (2018) 23(5):653–60. e5. doi: 10.1016/j.chom.2018.04.009 - DOI - PubMed
    1. Kim M, Qie Y, Park J, Kim CH. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe (2016) 20(2):202–14. doi: 10.1016/j.chom.2016.07.001 - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources