Digital surgery for gastroenterological diseases
- PMID: 34876786
- PMCID: PMC8611203
- DOI: 10.3748/wjg.v27.i42.7240
Digital surgery for gastroenterological diseases
Abstract
Advances in machine learning, computer vision and artificial intelligence methods, in combination with those in processing and cloud computing capability, portend the advent of true decision support during interventions in real-time and soon perhaps in automated surgical steps. Such capability, deployed alongside technology intraoperatively, is termed digital surgery and can be delivered without the need for high-end capital robotic investment. An area close to clinical usefulness right now harnesses advances in near infrared endolaparoscopy and fluorescence guidance for tissue characterisation through the use of biophysics-inspired algorithms. This represents a potential synergistic methodology for the deep learning methods currently advancing in ophthalmology, radiology, and recently gastroenterology via colonoscopy. As databanks of more general surgical videos are created, greater analytic insights can be derived across the operative spectrum of gastroenterological disease and operations (including instrumentation and operative step sequencing and recognition, followed over time by surgeon and instrument performance assessment) and linked to value-based outcomes. However, issues of legality, ethics and even morality need consideration, as do the limiting effects of monopolies, cartels and isolated data silos. Furthermore, the role of the surgeon, surgical societies and healthcare institutions in this evolving field needs active deliberation, as the default risks relegation to bystander or passive recipient. This editorial provides insight into this accelerating field by illuminating the near-future and next decade evolutionary steps towards widespread clinical integration for patient and societal benefit.
Keywords: Artificial intelligence; Biophysics; Deep learning; Digital surgery; Fluorescence-guided surgery; Gastrointestinal disease.
©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Conflict of interest statement
Conflict-of-interest statement: Cahill RA receives speaker fees from Stryker Corp, Johnson and Johnson/Ethicon and Olympus, consultancy fees from Touch Surgery and DistalMotion, and research funding from Intuitive Surgery. Cahill RA also holds research funding from EU Horizon 2020 with Palliare and the Irish Government in collaboration with IBM Research in Ireland and Deciphex. Hardy NP is employed as a researcher in this collaboration.
Figures
References
-
- European Commission. Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. Brussels. 2021. [cited 1 June 2021]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC02... .
-
- US Food and Drug Association (FDA) Gastrointestinal lesion software detection Regulation Number 21 CRF 876.1520. 2021. [cited 1 June 2021]. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf20/DEN200055.pdf .
-
- Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, Ferrara E, Spadaccini M, Alkandari A, Fugazza A, Anderloni A, Galtieri PA, Pellegatta G, Carrara S, Di Leo M, Craviotto V, Lamonaca L, Lorenzetti R, Andrealli A, Antonelli G, Wallace M, Sharma P, Rosch T, Hassan C. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology. 2020;159:512–520.e7. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
