Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;26(6):1966-1979.
doi: 10.1007/s10461-021-03546-9. Epub 2021 Dec 8.

Identification of Youthful Neurocognitive Trajectories in Adults Aging with HIV: A Latent Growth Mixture Model

Collaborators, Affiliations

Identification of Youthful Neurocognitive Trajectories in Adults Aging with HIV: A Latent Growth Mixture Model

Rowan Saloner et al. AIDS Behav. 2022 Jun.

Abstract

Despite the neurocognitive risks of aging with HIV, initial cross-sectional data suggest a subpopulation of older people with HIV (PWH) possess youthful neurocognition (NC) characteristic of SuperAgers (SA). Here we characterize longitudinal NC trajectories of older PWH and their convergent validity with baseline SA status, per established SuperAging criteria in PWH, and baseline biopsychosocial factors. Growth mixture modeling (GMM) identified longitudinal NC classes in 184 older (age ≥ 50-years) PWH with 1-5 years of follow-up. Classes were defined using 'peak-age' global T-scores, which compare performance to a normative sample of 25-year-olds. 3-classes were identified: Class 1Stable Elite (n = 31 [16.8%], high baseline peak-age T-scores with flat trajectory); Class 2Quadratic Average (n = 100 [54.3%], intermediate baseline peak-age T-scores with u-shaped trajectory); Class 3Quadratic Low (n = 53 [28.8%], low baseline peak-age T-scores with u-shaped trajectory). Baseline predictors of Class 1Stable Elite included SA status, younger age, higher cognitive and physiologic reserve, and fewer subjective cognitive difficulties. This GMM analysis supports the construct validity of SuperAging in older PWH through identification of a subgroup with longitudinally-stable, youthful neurocognition and robust biopsychosocial health.

A pesar de los riesgos neurocognitivos de envejecer con VIH, datos transversales iniciales sugieren que una subpoblación de personas con VIH (PCV) de edad mayor posee neurocognición (NC) juvenil, característica de los Súper-Ancianos (SA). Aquí nosotros caracterizamos trayectorias longitudinales de NC en PCV mayores y su validez convergente con su status de referencia de SA, según los criterios establecidos en PCV, y factores biopsicosociales en la base de referencia. El modelo de mezclas Gaussianas (GMM) identificó clases longitudinales de NC en 184 PCV mayores (edad ≥ 50-años) con 1–5 años de seguimiento. Las clases fueron definidas utilizando puntuaciones-T (T-scores) globales de “edad pico”, que comparan el desempeño con una muestra normativa de personas de 25 años de edad. 3-clases fueron identificadas: Clase 1Élite Estable (n = 31 [16.8%], puntuaciones-T de edad pico de referencia altas con trayectoria plana; Clase 2Promedio Cuadrático (n = 100 [54.3%], puntuaciones-T de edad pico de referencia intermedias con trayectoria en forma de u); Clase 3Cuadrática Baja (n = 53 [28.8%], %], puntuaciones-T de edad pico de referencia bajas con trayectoria en forma de u). Los predictores de referencia de la Clase 1Élite Estable incluyen estatus de SA, edad mas joven, reserva cognitiva y fisiológica superior, y menos dificultades cognitivas subjetivas. Este análisis GMM apoya la validez del constructo de Súper-Envejecimiento en PCV mayores mediante la identificación de un subgrupo longitudinalmente estable, neurocognición juvenil y una robusta salud biopsicosocial.

Keywords: Cognitive reserve; Comorbidity burden; Growth mixture model; HIV-associated neurocognitive disorder; SuperAging.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Figures

Fig. 1
Fig. 1
Trajectory plots are coded by the three latent trajectory classes: Class 1Stable Elite (blue), Class 2Quadratic Average (red), Class 3Quadratic Low (black). A Spaghetti plot of individual peak-age global T-scores (y-axis) across the 10 study timepoints (x-axis), which occurred in 6-month intervals. B Estimated trajectory means by class membership derived from growth mixture modeling. Error bars represent 95% confidence intervals (Color figure online)

References

    1. Stoff DM. Mental health research in HIV/AIDS and aging: problems and prospects. AIDS (London, England) 2004;18(Suppl 1):S3–10. doi: 10.1097/00002030-200418001-00002. - DOI - PubMed
    1. Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53(11):1120–1126. doi: 10.1093/cid/cir627. - DOI - PubMed
    1. Greene M, Covinsky KE, Valcour V, et al. Geriatric syndromes in older HIV-infected adults. J Acquir Immune Defic Syndr (1999) 2015;69(2):161–167. doi: 10.1097/QAI.0000000000000556. - DOI - PMC - PubMed
    1. Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? J Gerontol Ser A Biol Sci Med Sci. 2014;69(7):833–842. doi: 10.1093/gerona/glt168. - DOI - PMC - PubMed
    1. Aung HL, Aghvinian M, Gouse H, et al. Is there any evidence of premature, accentuated and accelerated aging effects on neurocognition in people living with HIV? A systematic review. AIDS Behav. 2021;25(3):917–960. doi: 10.1007/s10461-020-03053-3. - DOI - PMC - PubMed