Use of the deep learning approach to measure alveolar bone level
- PMID: 34879437
- PMCID: PMC9026777
- DOI: 10.1111/jcpe.13574
Use of the deep learning approach to measure alveolar bone level
Abstract
Aim: The goal was to use a deep convolutional neural network to measure the radiographic alveolar bone level to aid periodontal diagnosis.
Materials and methods: A deep learning (DL) model was developed by integrating three segmentation networks (bone area, tooth, cemento-enamel junction) and image analysis to measure the radiographic bone level and assign radiographic bone loss (RBL) stages. The percentage of RBL was calculated to determine the stage of RBL for each tooth. A provisional periodontal diagnosis was assigned using the 2018 periodontitis classification. RBL percentage, staging, and presumptive diagnosis were compared with the measurements and diagnoses made by the independent examiners.
Results: The average Dice Similarity Coefficient (DSC) for segmentation was over 0.91. There was no significant difference in the RBL percentage measurements determined by DL and examiners ( ). The area under the receiver operating characteristics curve of RBL stage assignment for stages I, II, and III was 0.89, 0.90, and 0.90, respectively. The accuracy of the case diagnosis was 0.85.
Conclusions: The proposed DL model provides reliable RBL measurements and image-based periodontal diagnosis using periapical radiographic images. However, this model has to be further optimized and validated by a larger number of images to facilitate its application.
Keywords: computer-assisted; deep learning; diagnosis; periodontal diseases; radiographic image interpretation.
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Conflict of interest statement
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest for this article.
Figures
References
-
- Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving J, Isard M & Kudlur M (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265–283).
-
- Chang H-J, Lee S-J, Yong T-H, Shin N-Y, Jang B-G, Kim J-E, Huh K-H, Lee S-S, Heo M-S, Choi S-C, Kim T-Il., Yi W-J (2020). Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis. Scientific Reports, 10(1), 7531. 10.1038/s41598-020-64509-z - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
