Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2021 Dec 8;21(1):1234.
doi: 10.1186/s12879-021-06937-4.

Identifying youth at high risk for sexually transmitted infections in community-based settings using a risk prediction tool: a validation study

Affiliations
Randomized Controlled Trial

Identifying youth at high risk for sexually transmitted infections in community-based settings using a risk prediction tool: a validation study

Katharina Kranzer et al. BMC Infect Dis. .

Abstract

BACKGROUND : Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most common bacterial sexually transmitted infections (STIs) worldwide. In the absence of affordable point-of-care STI tests, WHO recommends STI testing based on risk factors. This study aimed to develop a prediction tool with a sensitivity of > 90% and efficiency (defined as the percentage of individuals that are eligible for diagnostic testing) of < 60%.

Methods: This study offered CT/NG testing as part of a cluster-randomised trial of community-based delivery of sexual and reproductive health services to youth aged 16-24 years in Zimbabwe. All individuals accepting STI testing completed an STI risk factor questionnaire. The outcome was positivity for either CT or NG. Backwards-stepwise logistic regression was performed with p ≥ 0.05 as criteria for exclusion. Coefficients of variables included in the final multivariable model were multiplied by 10 to generate weights for a STI risk prediction tool. A maximum likelihood Receiver Operating Characteristics (ROC) model was fitted, with the continuous variable score divided into 15 categories of equal size. Sensitivity, efficiency and number needed to screen were calculated for different cut-points.

Results: From 3 December 2019 to 5 February 2020, 1007 individuals opted for STI testing, of whom 1003 (99.6%) completed the questionnaire. CT/NG prevalence was 17.5% (95% CI 15.1, 19.8) (n = 175). CT/NG positivity was independently associated with being female, number of lifetime sexual partners, relationship status, HIV status, self-assessed STI risk and past or current pregnancy. The STI risk prediction score including those variables ranged from 2 to 46 with an area under the ROC curve of 0.72 (95% CI 0.68, 0.76). Two cut-points were chosen: (i) 23 for optimised sensitivity (75.9%) and specificity (59.3%) and (ii) 19 to maximise sensitivity (82.4%) while keeping efficiency at < 60% (59.4%).

Conclusions: The high prevalence of STIs among youth, even in those with no or one reported risk factor, may preclude the use of risk prediction tools for selective STI testing. At a cut-point of 19 one in six young people with STIs would be missed.

Keywords: Adolescents; Risk prediction tool; Screening; Sexually transmitted infections.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Distribution of STI risk scores. Red bars: tested positive for STI, grey bar: tested negative for STI, red line: efficiency (proportion scoring at or above the cut-point), grey line: sensitivity, blue line specificity, black dotted line: cut-point of 23
Fig. 2
Fig. 2
Sensitivity and specificity of all risk score cut-points. Red line: efficiency (proportion scoring at or above the cut-point), grey line: sensitivity, blue line specificity, black dotted line: cut-point of 23
Fig. 3
Fig. 3
ROC plot of STI risk score

References

    1. Adachi K, Klausner JD, Xu J, Ank B, Bristow CC, Morgado MG, et al. Chlamydia trachomatis and Neisseria gonorrhoeae in HIV-infected pregnant women and adverse infant outcomes. Pediatr Infect Dis J. 2016;35(8):894–900. doi: 10.1097/INF.0000000000001199. - DOI - PMC - PubMed
    1. Johnson HL, Ghanem KG, Zenilman JM, Erbelding EJ. Sexually transmitted infections and adverse pregnancy outcomes among women attending inner city public sexually transmitted diseases clinics. Sex Transm Dis. 2011;38(3):167–71. doi: 10.1097/OLQ.0b013e3181f2e85f. - DOI - PubMed
    1. Warr AJ, Pintye J, Kinuthia J, Drake AL, Unger JA, McClelland RS, et al. Sexually transmitted infections during pregnancy and subsequent risk of stillbirth and infant mortality in Kenya: a prospective study. Sex Transm Infect. 2019;95(1):60–6. doi: 10.1136/sextrans-2018-053597. - DOI - PMC - PubMed
    1. Olson-Chen C, Balaram K, Hackney DN. Chlamydia trachomatis and adverse pregnancy outcomes: meta-analysis of patients with and without infection. Matern Child Health J. 2018;22(6):812–21. doi: 10.1007/s10995-018-2451-z. - DOI - PubMed
    1. Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect. 1999;75(1):3–17. doi: 10.1136/sti.75.1.3. - DOI - PMC - PubMed

Publication types