Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct 19;12(43):14343-14352.
doi: 10.1039/d1sc03851f. eCollection 2021 Nov 10.

Cross-dehydrogenative N-N couplings

Affiliations
Review

Cross-dehydrogenative N-N couplings

Alexis Tabey et al. Chem Sci. .

Abstract

The relatively high electronegativity of nitrogen makes N-N bond forming cross-coupling reactions particularly difficult, especially in an intermolecular fashion. The challenge increases even further when considering the case of dehydrogenative N-N coupling reactions, which are advantageous in terms of step and atom economy, but introduce the problem of the oxidant in order to become thermodynamically feasible. Indeed, the oxidizing system must be designed to activate the target N-H bonds, while at the same time avoid undesired N-N homocoupling as well as C-N and C-C coupled side products. Thus, preciously few intermolecular hetero N-N cross-dehydrogenative couplings exist, in spite of the central importance of N-N bonds in organic chemistry. This review aims at analyzing these few rare cases and provides a perspective for future developments.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Examples of compounds potentially accessible by intermolecular N–N bond formation.
Scheme 2
Scheme 2. The N–N cross-dehydrogenative coupling approach.
Scheme 3
Scheme 3. Seminal work concerning the oxidation of secondary amines and decisive impact of the oxidizing method.
Scheme 4
Scheme 4. Cu-mediated N–N dehydrogenative coupling of secondary amines.
Scheme 5
Scheme 5. Cu-catalyzed N–N dehydrogenative coupling of secondary amines.
Scheme 6
Scheme 6. Formation of di- and tetra-phenylhydrazines.
Scheme 7
Scheme 7. Iron-catalyzed oxidative N–N homocoupling of diarylamines.
Scheme 8
Scheme 8. Oxidative homocoupling reaction of secondary amines using rare-earth-metals.
Scheme 9
Scheme 9. Synthesis of 9,9′-bicarbazoles with KMnO4 as the oxidant.
Scheme 10
Scheme 10. I2/KI-mediated dehydrogenative N–N bond formation.
Scheme 11
Scheme 11. KI/KIO4-mediated dehydrogenative N–N bond formation.
Scheme 12
Scheme 12. Electrochemical dehydrogenative N–N dimerization of carbazoles and carbolines, route to the total synthesis of dixiamycin B.
Scheme 13
Scheme 13. Other electrochemical synthesis of tetrasubstituted hydrazines by dehydrogenative N–N bond formation.
Scheme 14
Scheme 14. Dehydrogenative anodic oxidation of anilides for N–N bond formation.
Scheme 15
Scheme 15. Electrochemical dehydrogenative N–N bond formation of N-aryl aminopyridines.
Scheme 16
Scheme 16. Proposed mechanism of the electrochemical oxidative N–N bond formation of N-aryl aminopyridines.
Scheme 17
Scheme 17. Cu-catalyzed dehydrogenative hetero N–N bond formation.
Scheme 18
Scheme 18. Origin of the N1–N2 hetero-coupling product and proposed oxidative mechanism.
Scheme 19
Scheme 19. Metal-free dehydrogenative hetero N–N cross-coupling reactions.
Scheme 20
Scheme 20. Electrochemical oxidative hetero N–N coupling reaction.
Scheme 21
Scheme 21. Heterodehydrogenative N–N coupling of amides and benzotriazoles.
Scheme 22
Scheme 22. Towards atroposelective/enantioselective N–N bond formation.

References

    1. Blair L. M. Sperry J. J. Nat. Prod. 2013;76:794. doi: 10.1021/np400124n. - DOI - PubMed
    1. Liu X.-Y. Zhang Y.-L. Fei X. Liao L.-S. Fan J. Chem.–Eur. J. 2019;25:4501. doi: 10.1002/chem.201806314. - DOI - PubMed
    1. Feng S. Xu H. Zhang C. Chen Y. Zeng J. Jiang D. Jiang J.-X. Chem. Commun. 2017;53:11334. doi: 10.1039/C7CC07024A. - DOI - PubMed
    1. Selected intramolecular N–N bond forming coupling reactions:

    2. Kotali A. Harris P. A. J. Heterocyclic Chem. 1996;33:605. doi: 10.1002/jhet.5570330312. - DOI
    3. Sajiki H. Hattori K. Sako M. Hirota K. Synlett. 1997:1409.
    4. Kurth M. J. Olmstead M. M. Haddadin M. J. J. Org. Chem. 2005;70:1060. doi: 10.1021/jo048153i. - DOI - PubMed
    5. Correa A. Tellitu I. Domınguez E. SanMartin R. Tetrahedron. 2006;62:11100. doi: 10.1016/j.tet.2006.09.031. - DOI
    6. Correa A. Tellitu I. Dominguez E. SanMartin R. J. Org. Chem. 2006;71:3501. doi: 10.1021/jo060070+. - DOI - PubMed
    7. Sawant D. Kumar R. Maulik P. R. Kundu B. Org. Lett. 2006;8:1525. doi: 10.1021/ol053033y. - DOI - PubMed
    8. Counceller C. M. Eichman C. C. Wray B. C. Stambuli J. P. Org. Lett. 2008;10:1021. doi: 10.1021/ol800053f. - DOI - PubMed
    9. Wang K. Fu X. Liu J. Liang Y. Dong D. Org. Lett. 2009;11:1015. doi: 10.1021/ol802952e. - DOI - PubMed
    10. Lehmann F. Koolmeister T. Odell L. R. Scobie M. Org. Lett. 2009;11:5078. doi: 10.1021/ol902085k. - DOI - PubMed
    11. Wray B. C. Stambuli J. P. Org. Lett. 2010;12:4576. doi: 10.1021/ol101899q. - DOI - PubMed
    12. Hu J. Cheng Y. Yang Y. Rao Y. Chem. Commun. 2011;47:10133. doi: 10.1039/C1CC13908H. - DOI - PubMed
    13. Yu D.-G. Suri M. Glorius F. J. Am. Chem. Soc. 2013;135:8802. doi: 10.1021/ja4033555. - DOI - PubMed
    14. Lin W.-C. Yang D.-Y. Org. Lett. 2013;15:4862. doi: 10.1021/ol402286d. - DOI - PubMed
    15. Park S. W. Choi H. Lee J.-h. Lee Y.-J. Ku J.-M. Lee S. Y. Nam T.-g. Arch. Pharm. Res. 2016;39:302. doi: 10.1007/s12272-016-0706-z. - DOI - PubMed
    16. Dai G. Yang L. Zhou W. Org. Chem. Front. 2017;4:229. doi: 10.1039/C6QO00573J. - DOI
    17. For a review on intramolecular N–N bond formation, see:

    18. Guo Q. Lu Z. Synthesis. 2017;49:3835. doi: 10.1055/s-0036-1588512. - DOI
    19. Zhang Y. Duan D. Zhong Y. Guo X.-A. Guo J. Gou J. Gao Z. Yu B. Org. Lett. 2019;21:4960. doi: 10.1021/acs.orglett.9b01396. - DOI - PubMed
    1. Ramakumar K. Tunge J. A. Chem. Commun. 2014;50:13056. doi: 10.1039/C4CC06369D. - DOI - PubMed