Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 18;12(43):14570-14576.
doi: 10.1039/d1sc04403f. eCollection 2021 Nov 10.

Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule

Affiliations

Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule

Kazuto Takaishi et al. Chem Sci. .

Abstract

A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (-)- and (+)-CPL, respectively.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Chemical structures of 1–7 and the exciplex chirality rule. Conditions of photographs: CH2Cl2, 5.0 × 10−7 M, rt. Φfl values are 0.21 for 1 and 0.83 for 2.
Scheme 1
Scheme 1. Synthesis of (R)-2 and (R,R,R)-7.
Fig. 2
Fig. 2. (a) CD, (b) UV-Vis, (c) CPL, and (d) FL spectra of (R)-2–6 and (R,R,R)-7. Conditions: CH2Cl2, 1.0 × 10−5 M for 2–6 and 6.7 × 10−6 M for 7, 20 °C, l = 1 cm, λex = 355 nm, baseline-corrected.
Fig. 3
Fig. 3. FL properties of reference compounds 2′ and 14–17. The λex,max values are given in parentheses.
Fig. 4
Fig. 4. (a) CPL spectra of (R)-4 in various solutions at 20 °C and (b) VT CPL spectra of (R)-4 in toluene. Conditions: 1.0 × 10−5 M, l = 1 cm, λex = 355 nm.
Fig. 5
Fig. 5. (TD) DFT-optimized ground- and excited-state structures of (a and b) (R)-2 and (c and d) (R)-3 at the CAM-B3LYP/6-31G(d,p) level.
Fig. 6
Fig. 6. Relationship between the twist angle and theoretical sign of CPL of the pyrene–perylene exciplexes. TD DFT calculations were performed at the CAM-B3LYP/6-311+G(2d,p) level.

References

    1. For applications of CPL dyes:

    2. Wagenknecht C. Li C.-M. Reingruber A. Bao X.-H. Goebel A. Chen Y.-A. Zhang Q. Chen K. Pan J.-W. Nat. Photonics. 2010;4:549–552. doi: 10.1038/nphoton.2010.123. - DOI
    3. Carr R. Evans N. H. Parker D. Chem. Soc. Rev. 2012;41:7673–7686. doi: 10.1039/C2CS35242G. - DOI - PubMed
    4. Singh R. Unni K. N. N. Solanki A. Deepak Opt. Mater. 2012;34:716–723. doi: 10.1016/j.optmat.2011.10.005. - DOI
    5. Heffern M. C. Matosziuk L. M. Meade T. J. Chem. Rev. 2014;114:4496–4539. doi: 10.1021/cr400477t. - DOI - PMC - PubMed
    6. Frawley A. T. Linford H. V. Starck M. Pal R. Parker D. Chem. Sci. 2018;9:1042–1049. doi: 10.1039/C7SC04422D. - DOI - PMC - PubMed
    7. Li M. Li S.-H. Zhang D. Cai M. Duan L. Fung M.-K. Chen C.-F. Angew. Chem., Int. Ed. 2018;57:2889–2893. doi: 10.1002/anie.201800198. - DOI - PubMed
    8. Zhang D.-W. Li M. Chen C.-F. Chem. Soc. Rev. 2020;49:1331–1343. doi: 10.1039/C9CS00680J. - DOI - PubMed
    9. Jiang Z. Wang J. Gao T. Ma J. Liu Z. Chen R. ACS Appl. Mater. Interfaces. 2020;12:9520–9527. doi: 10.1021/acsami.9b20568. - DOI - PubMed
    10. Albano G. Pescitelli G. Di Bari L. Chem. Rev. 2020;120:10145–10243. doi: 10.1021/acs.chemrev.0c00195. - DOI - PubMed
    11. Tu Z.-L. Yan Z.-P. Liang X. Chen L. Wu Z.-G. Wang Y. Zheng Y.-X. Zuo J.-L. Pan Y. Adv. Sci. 2020;7:2000804. doi: 10.1002/advs.202000804. - DOI - PMC - PubMed
    12. MacKenzie L. E. Pal R. Nat. Chem. Rev. 2021;5:109–124. doi: 10.1038/s41570-020-00235-4. - DOI - PubMed
    13. Dhbaibi K. Abella L. Meunier-Della-Gatta S. Roisnel T. Vanthuyne N. Jamoussi B. Pieters G. Racine B. Quesnel E. Autschbach J. Crassous J. Favereau L. Chem. Sci. 2021;12:5522–5533. doi: 10.1039/D0SC06895K. - DOI - PMC - PubMed
    1. For reviews on organic CPL dyes:

    2. Maeda H. Bando Y. Pure Appl. Chem. 2013;85:1967–1978.
    3. Sánchez-Carnerero E. M. Agarrabeitia A. R. Moreno F. Maroto B. L. Muller G. Ortiz M. J. de la Moya S. Chem.–Eur. J. 2015;21:13488–13500. doi: 10.1002/chem.201501178. - DOI - PMC - PubMed
    4. Kumar J. Nakashima T. Kawai T. J. Phys. Chem. Lett. 2015;6:3445–3452. doi: 10.1021/acs.jpclett.5b01452. - DOI - PubMed
    5. Longhi G. Castiglioni E. Koshoubu J. Mazzeo G. Abbate S. Chirality. 2016;28:696–707. doi: 10.1002/chir.22647. - DOI - PubMed
    6. Tanaka H. Inoue Y. Mori T. ChemPhotoChem. 2018;2:386–402. doi: 10.1002/cptc.201800015. - DOI
    7. Pop F. Zigon N. Avarvari N. Chem. Rev. 2019;119:8435–8478. doi: 10.1021/acs.chemrev.8b00770. - DOI - PubMed
    8. Ma J.-L. Peng Q. Zhao C.-H. Chem.–Eur. J. 2019;25:15441–15454. doi: 10.1002/chem.201903252. - DOI - PubMed
    9. Ohishi Y. Inouye M. Tetrahedron Lett. 2019;60:151232. doi: 10.1016/j.tetlet.2019.151232. - DOI
    10. Homberg A. Lacour J. Chem. Sci. 2020;11:6362–6369. doi: 10.1039/D0SC01011A. - DOI - PMC - PubMed
    11. Arrico L. Di Bari L. Zinna F. Chem.–Eur. J. 2021;27:2920–2934. doi: 10.1002/chem.202002791. - DOI - PubMed
    12. Greenfield J. L. Wade J. Brandt J. R. Shi X. Penfoldd T. J. Fuchter M. J. Chem. Sci. 2021;12:8589–8602. doi: 10.1039/D1SC02335G. - DOI - PMC - PubMed
    1. Takaishi K. Takehana R. Ema T. Chem. Commun. 2018;54:1149–1452. doi: 10.1039/C7CC09187G. - DOI - PubMed
    2. Takaishi K. Iwachido K. Takehana R. Uchiyama M. Ema T. J. Am. Chem. Soc. 2019;141:6185–6190. doi: 10.1021/jacs.9b02582. - DOI - PubMed
    1. Inouye M. Hayashi K. Yonenaga Y. Itou T. Fujimoto K. Uchida T. Iwamura M. Nozaki K. Angew. Chem., Int. Ed. 2014;53:14392–14396. doi: 10.1002/anie.201408193. - DOI - PubMed
    2. Nakamura M. Suzuki J. Ota F. Takada T. Akagi K. Yamana K. Chem.–Eur. J. 2016;22:9121–9124. doi: 10.1002/chem.201602043. - DOI - PubMed
    3. Hashimoto Y. Nakashima Y. Shimizu D. Kawai T. Chem. Commun. 2016;52:5171–5174. doi: 10.1039/C6CC01277A. - DOI - PubMed
    4. Ikai T. Kojima Y. Shinohara K. Maeda K. Kanoh S. Polymer. 2017;117:220–224. doi: 10.1016/j.polymer.2017.04.032. - DOI
    5. Ito S. Ikeda K. Nakanishi S. Imai Y. Asami M. Chem. Commun. 2017;53:6323–6326. doi: 10.1039/C7CC01351E. - DOI - PubMed
    6. Koga S. Ueki S. Shimada M. Ishii R. Kurihara Y. Yamanoi Y. Yuasa J. Kawai T. Uchida T. Iwamura M. Nozaki K. Nishihara H. J. Org. Chem. 2017;82:6108–6117. doi: 10.1021/acs.joc.7b00583. - DOI - PubMed
    7. Mimura Y. Kitamura S. Shizuma M. Kitamatsu M. Imai Y. Org. Biomol. Chem. 2018;16:8273–8279. doi: 10.1039/C8OB01869C. - DOI - PubMed
    8. Reiné P. Justica J. Morcillo S. P. Abbate S. Vaz B. Ribagorda M. Orte Á. de Cienfuegos L. Á. Longhi G. Campaña A. G. Miguel D. Cuerva J. M. J. Org. Chem. 2018;83:4455–4463. doi: 10.1021/acs.joc.8b00162. - DOI - PMC - PubMed
    9. Wang Y. Li X. Li F. Sun W.-Y. Zhu C. Cheng Y. Chem. Commun. 2018;53:7505–7508. doi: 10.1039/C7CC04363E. - DOI - PubMed
    10. Anetai H. Takeda T. Hoshino N. Araki Y. Wada T. Yamamoto S. Mitsuishi M. Tsuchida H. Ogoshi T. Akutagawa T. J. Phys. Chem. C. 2018;122:6323–6331. doi: 10.1021/acs.jpcc.7b12747. - DOI
    11. Niu D. Jiang Y. Ji L. Ouyang G. Liu M. Angew. Chem., Int. Ed. 2019;58:5946–5950. doi: 10.1002/anie.201900607. - DOI - PubMed
    12. Hara N. Shizuma M. Harada T. Imai Y. RSC Adv. 2020;10:11335–11338. doi: 10.1039/D0RA01552K. - DOI - PMC - PubMed
    1. Li J. Yang C. Peng X. Qi Q. Li Y. Lai W.-Y. Huang W. Org. Biomol. Chem. 2017;15:8463–8470. doi: 10.1039/C7OB01959A. - DOI - PubMed
    2. Hayashi K. Miyaoka Y. Oishi Y. Uchida T. Iwamura M. Nozaki K. Inouye M. Chem.–Eur. J. 2018;24:14613–14616. doi: 10.1002/chem.201803215. - DOI - PubMed
    3. Homberg A. Brun E. Zinna F. Pascal S. Górecki M. Monnier L. Besnard C. Pescitelli G. Di Bari L. Lacour J. Chem. Sci. 2018;9:7043–7052. doi: 10.1039/C8SC02935K. - DOI - PMC - PubMed