Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Dec;600(7890):675-679.
doi: 10.1038/s41586-021-04064-3. Epub 2021 Dec 9.

The power of genetic diversity in genome-wide association studies of lipids

Sarah E Graham  1 Shoa L Clarke #  2   3 Kuan-Han H Wu #  4 Stavroula Kanoni #  5 Greg J M Zajac #  6 Shweta Ramdas #  7 Ida Surakka  1 Ioanna Ntalla  8 Sailaja Vedantam  9   10 Thomas W Winkler  11 Adam E Locke  12 Eirini Marouli  5 Mi Yeong Hwang  13 Sohee Han  13 Akira Narita  14 Ananyo Choudhury  15 Amy R Bentley  16 Kenneth Ekoru  16 Anurag Verma  7 Bhavi Trivedi  17 Hilary C Martin  18 Karen A Hunt  17 Qin Hui  19   20 Derek Klarin  21   22   23 Xiang Zhu  2   24   25   26 Gudmar Thorleifsson  27 Anna Helgadottir  27 Daniel F Gudbjartsson  27   28 Hilma Holm  27 Isleifur Olafsson  29 Masato Akiyama  30   31 Saori Sakaue  30   32   33 Chikashi Terao  34 Masahiro Kanai  23   30   35 Wei Zhou  4   36   37 Ben M Brumpton  38   39   40 Humaira Rasheed  38   39 Sanni E Ruotsalainen  41 Aki S Havulinna  41   42 Yogasudha Veturi  43 QiPing Feng  44 Elisabeth A Rosenthal  45 Todd Lingren  46 Jennifer Allen Pacheco  47 Sarah A Pendergrass  48 Jeffrey Haessler  49 Franco Giulianini  50 Yuki Bradford  43 Jason E Miller  43 Archie Campbell  51   52 Kuang Lin  53 Iona Y Millwood  53   54 George Hindy  55 Asif Rasheed  56 Jessica D Faul  57 Wei Zhao  58 David R Weir  57 Constance Turman  59 Hongyan Huang  59 Mariaelisa Graff  60 Anubha Mahajan  61 Michael R Brown  62 Weihua Zhang  63   64   65 Ketian Yu  66 Ellen M Schmidt  66 Anita Pandit  66 Stefan Gustafsson  67 Xianyong Yin  66 Jian'an Luan  68 Jing-Hua Zhao  69 Fumihiko Matsuda  70 Hye-Mi Jang  13 Kyungheon Yoon  13 Carolina Medina-Gomez  71   72 Achilleas Pitsillides  73 Jouke Jan Hottenga  74   75 Gonneke Willemsen  74   76 Andrew R Wood  77 Yingji Ji  77 Zishan Gao  78   79   80 Simon Haworth  81   82 Ruth E Mitchell  81   83 Jin Fang Chai  84 Mette Aadahl  85 Jie Yao  86 Ani Manichaikul  87 Helen R Warren  88   89 Julia Ramirez  88 Jette Bork-Jensen  90 Line L Kårhus  85 Anuj Goel  61   91 Maria Sabater-Lleal  92   93 Raymond Noordam  94 Carlo Sidore  95 Edoardo Fiorillo  96 Aaron F McDaid  97   98 Pedro Marques-Vidal  99 Matthias Wielscher  100 Stella Trompet  101   102 Naveed Sattar  103 Line T Møllehave  85 Betina H Thuesen  85 Matthias Munz  104   105   106 Lingyao Zeng  107   108 Jianfeng Huang  109 Bin Yang  109 Alaitz Poveda  110 Azra Kurbasic  110 Claudia Lamina  111   112 Lukas Forer  111   112 Markus Scholz  113   114 Tessel E Galesloot  115 Jonathan P Bradfield  116 E Warwick Daw  117 Joseph M Zmuda  118 Jonathan S Mitchell  119 Christian Fuchsberger  119 Henry Christensen  120 Jennifer A Brody  121 Mary F Feitosa  117 Mary K Wojczynski  117 Michael Preuss  122 Massimo Mangino  123   124 Paraskevi Christofidou  123 Niek Verweij  125 Jan W Benjamins  125 Jorgen Engmann  126   127 Rachel L Kember  128 Roderick C Slieker  129   130 Ken Sin Lo  131 Nuno R Zilhao  132 Phuong Le  133 Marcus E Kleber  134   135 Graciela E Delgado  134 Shaofeng Huo  136 Daisuke D Ikeda  137 Hiroyuki Iha  137 Jian Yang  138   139 Jun Liu  140 Hampton L Leonard  141   142 Jonathan Marten  143 Börge Schmidt  144 Marina Arendt  144   145 Laura J Smyth  146 Marisa Cañadas-Garre  146 Chaolong Wang  147   148 Masahiro Nakatochi  149 Andrew Wong  150 Nina Hutri-Kähönen  151   152 Xueling Sim  84 Rui Xia  153 Alicia Huerta-Chagoya  154 Juan Carlos Fernandez-Lopez  155 Valeriya Lyssenko  156   157 Meraj Ahmed  158 Anne U Jackson  6 Noha A Yousri  159   160 Marguerite R Irvin  161 Christopher Oldmeadow  162 Han-Na Kim  163   164 Seungho Ryu  165   166 Paul R H J Timmers  143   167 Liubov Arbeeva  168 Rajkumar Dorajoo  148 Leslie A Lange  169 Xiaoran Chai  170   171 Gauri Prasad  172   173 Laura Lorés-Motta  174 Marc Pauper  174 Jirong Long  175 Xiaohui Li  86 Elizabeth Theusch  176 Fumihiko Takeuchi  177 Cassandra N Spracklen  178   179 Anu Loukola  41 Sailalitha Bollepalli  41 Sophie C Warner  180   181 Ya Xing Wang  182   183 Wen B Wei  183 Teresa Nutile  184 Daniela Ruggiero  184   185 Yun Ju Sung  186 Yi-Jen Hung  187 Shufeng Chen  109 Fangchao Liu  109 Jingyun Yang  188   189 Katherine A Kentistou  167 Mathias Gorski  11   190 Marco Brumat  191 Karina Meidtner  192   193 Lawrence F Bielak  58 Jennifer A Smith  57   58 Prashantha Hebbar  194 Aliki-Eleni Farmaki  195   196 Edith Hofer  197   198 Maoxuan Lin  199 Chao Xue  1 Jifeng Zhang  1 Maria Pina Concas  200 Simona Vaccargiu  201 Peter J van der Most  202 Niina Pitkänen  203   204 Brian E Cade  205   206 Jiwon Lee  205 Sander W van der Laan  207 Kumaraswamy Naidu Chitrala  208 Stefan Weiss  209 Martina E Zimmermann  11 Jong Young Lee  210 Hyeok Sun Choi  211 Maria Nethander  212   213 Sandra Freitag-Wolf  214 Lorraine Southam  215   216 Nigel W Rayner  18   61   215   217 Carol A Wang  218 Shih-Yi Lin  219   220   221 Jun-Sing Wang  222   223 Christian Couture  224 Leo-Pekka Lyytikäinen  225   226 Kjell Nikus  227   228 Gabriel Cuellar-Partida  229 Henrik Vestergaard  90   230 Bertha Hildalgo  231 Olga Giannakopoulou  5 Qiuyin Cai  175 Morgan O Obura  129 Jessica van Setten  232 Xiaoyin Li  233 Karen Schwander  117 Natalie Terzikhan  72 Jae Hun Shin  211 Rebecca D Jackson  234 Alexander P Reiner  235 Lisa Warsinger Martin  236 Zhengming Chen  53   54 Liming Li  237 Heather M Highland  60 Kristin L Young  60 Takahisa Kawaguchi  70 Joachim Thiery  114   238 Joshua C Bis  121 Girish N Nadkarni  122 Lenore J Launer  239 Huaixing Li  136 Mike A Nalls  141   142 Olli T Raitakari  203   204   240 Sahoko Ichihara  241 Sarah H Wild  242 Christopher P Nelson  180   181 Harry Campbell  167 Susanne Jäger  192   193 Toru Nabika  243 Fahd Al-Mulla  194 Harri Niinikoski  244   245 Peter S Braund  180   181 Ivana Kolcic  246 Peter Kovacs  247 Tota Giardoglou  248 Tomohiro Katsuya  249   250 Konain Fatima Bhatti  5 Dominique de Kleijn  251 Gert J de Borst  251 Eung Kweon Kim  252 Hieab H H Adams  253   254 M Arfan Ikram  72 Xiaofeng Zhu  233 Folkert W Asselbergs  232 Adriaan O Kraaijeveld  232 Joline W J Beulens  129   255 Xiao-Ou Shu  175 Loukianos S Rallidis  256 Oluf Pedersen  90 Torben Hansen  90 Paul Mitchell  257 Alex W Hewitt  258   259 Mika Kähönen  260   261 Louis Pérusse  224   262 Claude Bouchard  263 Anke Tönjes  247 Yii-Der Ida Chen  86 Craig E Pennell  218 Trevor A Mori  264 Wolfgang Lieb  265 Andre Franke  266 Claes Ohlsson  212   267 Dan Mellström  212   268 Yoon Shin Cho  211 Hyejin Lee  269 Jian-Min Yuan  270   271 Woon-Puay Koh  272   273 Sang Youl Rhee  274 Jeong-Taek Woo  274 Iris M Heid  11 Klaus J Stark  11 Henry Völzke  275 Georg Homuth  209 Michele K Evans  276 Alan B Zonderman  276 Ozren Polasek  246 Gerard Pasterkamp  207 Imo E Hoefer  207 Susan Redline  205   206 Katja Pahkala  203   204   277 Albertine J Oldehinkel  278 Harold Snieder  202 Ginevra Biino  279 Reinhold Schmidt  197 Helena Schmidt  280 Y Eugene Chen  1 Stefania Bandinelli  281 George Dedoussis  195 Thangavel Alphonse Thanaraj  194 Sharon L R Kardia  58 Norihiro Kato  177 Matthias B Schulze  192   193   282 Giorgia Girotto  191   283 Bettina Jung  190 Carsten A Böger  190   284   285 Peter K Joshi  167 David A Bennett  188   189 Philip L De Jager  286   287 Xiangfeng Lu  109 Vasiliki Mamakou  288   289 Morris Brown  89   290 Mark J Caulfield  88   89 Patricia B Munroe  88   89 Xiuqing Guo  86 Marina Ciullo  184   185 Jost B Jonas  291   292   293 Nilesh J Samani  180   181 Jaakko Kaprio  41 Päivi Pajukanta  294 Linda S Adair  295   296 Sonny Augustin Bechayda  297   298 H Janaka de Silva  299 Ananda R Wickremasinghe  300 Ronald M Krauss  301 Jer-Yuarn Wu  302 Wei Zheng  175 Anneke I den Hollander  174 Dwaipayan Bharadwaj  173   303 Adolfo Correa  304 James G Wilson  305 Lars Lind  306 Chew-Kiat Heng  307   308 Amanda E Nelson  168   309 Yvonne M Golightly  168   310   311   312 James F Wilson  143   167 Brenda Penninx  313   76 Hyung-Lae Kim  314 John Attia  162   315 Rodney J Scott  162   315 D C Rao  316 Donna K Arnett  317 Steven C Hunt  159   318 Mark Walker  319 Heikki A Koistinen  320   321   322 Giriraj R Chandak  158   323 Chittaranjan S Yajnik  324 Josep M Mercader  325   326   327 Teresa Tusié-Luna  328   329   330 Carlos A Aguilar-Salinas  331   332 Clicerio Gonzalez Villalpando  333 Lorena Orozco  334 Myriam Fornage  153   335 E Shyong Tai  84   336 Rob M van Dam  84   336 Terho Lehtimäki  225   226 Nish Chaturvedi  150 Mitsuhiro Yokota  337 Jianjun Liu  148 Dermot F Reilly  338 Amy Jayne McKnight  146 Frank Kee  146 Karl-Heinz Jöckel  144 Mark I McCarthy  48   61   339 Colin N A Palmer  340 Veronique Vitart  143 Caroline Hayward  143 Eleanor Simonsick  341 Cornelia M van Duijn  140 Fan Lu  342 Jia Qu  342 Haretsugu Hishigaki  137 Xu Lin  136 Winfried März  134   343   344 Esteban J Parra  133 Miguel Cruz  345 Vilmundur Gudnason  132   346 Jean-Claude Tardif  131   347 Guillaume Lettre  131   348 Leen M 't Hart  129   130   349 Petra J M Elders  350 Scott M Damrauer  351   352 Meena Kumari  353 Mika Kivimaki  127 Pim van der Harst  125 Tim D Spector  123 Ruth J F Loos  122   354 Michael A Province  117 Bruce M Psaty  355   356 Ivan Brandslund  120   357 Peter P Pramstaller  119 Kaare Christensen  358 Samuli Ripatti  41   359   360 Elisabeth Widén  41 Hakon Hakonarson  361   362 Struan F A Grant  363   362   364 Lambertus A L M Kiemeney  115 Jacqueline de Graaf  115 Markus Loeffler  113   114 Florian Kronenberg  112   365 Dongfeng Gu  109   366 Jeanette Erdmann  367 Heribert Schunkert  107   368 Paul W Franks  110 Allan Linneberg  85   369 J Wouter Jukema  101   370 Amit V Khera  371   372   373   374 Minna Männikkö  375 Marjo-Riitta Jarvelin  100   376   377 Zoltan Kutalik  98   378 Francesco Cucca  379   380 Dennis O Mook-Kanamori  381   382 Ko Willems van Dijk  383   384   385 Hugh Watkins  61   91 David P Strachan  386 Niels Grarup  90 Peter Sever  387 Neil Poulter  388 Jerome I Rotter  86 Thomas M Dantoft  85 Fredrik Karpe  389   390 Matt J Neville  389   390 Nicholas J Timpson  81   83 Ching-Yu Cheng  170   391 Tien-Yin Wong  170   391 Chiea Chuen Khor  148 Charumathi Sabanayagam  170   391 Annette Peters  80   193   392 Christian Gieger  79   80   193 Andrew T Hattersley  393 Nancy L Pedersen  394 Patrik K E Magnusson  394 Dorret I Boomsma  74   75   395 Eco J C de Geus  74   76 L Adrienne Cupples  73   396 Joyce B J van Meurs  71   72 Mohsen Ghanbari  72   397 Penny Gordon-Larsen  295   296 Wei Huang  398 Young Jin Kim  13 Yasuharu Tabara  70 Nicholas J Wareham  68 Claudia Langenberg  68 Eleftheria Zeggini  215   216   399 Johanna Kuusisto  400 Markku Laakso  400 Erik Ingelsson  3   67   401   402 Goncalo Abecasis  66   403 John C Chambers  63   64   404   405 Jaspal S Kooner  64   65   406   387 Paul S de Vries  62 Alanna C Morrison  62 Kari E North  60 Martha Daviglus  407 Peter Kraft  59   408 Nicholas G Martin  409 John B Whitfield  409 Shahid Abbas  56   410 Danish Saleheen  56   411   412 Robin G Walters  53   54   413 Michael V Holmes  53   54   414 Corri Black  415 Blair H Smith  416 Anne E Justice  417 Aris Baras  403 Julie E Buring  50   325 Paul M Ridker  50   325 Daniel I Chasman  50   325 Charles Kooperberg  49 Wei-Qi Wei  418 Gail P Jarvik  419 Bahram Namjou  420 M Geoffrey Hayes  421   422   423 Marylyn D Ritchie  43 Pekka Jousilahti  42 Veikko Salomaa  42 Kristian Hveem  38   424   425 Bjørn Olav Åsvold  38   424   426 Michiaki Kubo  427 Yoichiro Kamatani  30   428 Yukinori Okada  30   32   429   430 Yoshinori Murakami  431 Unnur Thorsteinsdottir  27   346 Kari Stefansson  27   346 Yuk-Lam Ho  432 Julie A Lynch  433   434 Daniel J Rader  363   435 Philip S Tsao  2   3   436 Kyong-Mi Chang  435   437 Kelly Cho  432   438 Christopher J O'Donnell  432   438 John M Gaziano  432   438 Peter Wilson  439   440 Charles N Rotimi  16 Scott Hazelhurst  15   441 Michèle Ramsay  15   442 Richard C Trembath  443 David A van Heel  17 Gen Tamiya  14 Masayuki Yamamoto  14 Bong-Jo Kim  13 Karen L Mohlke  178 Timothy M Frayling  77 Joel N Hirschhorn  9   10   444 Sekar Kathiresan  372   374   445 VA Million Veteran ProgramGlobal Lipids Genetics Consortium*Michael Boehnke  6 Pradeep Natarajan  37   446   447   448 Gina M Peloso  73 Christopher D Brown  7 Andrew P Morris  449 Themistocles L Assimes  450   451   452 Panos Deloukas  5   89   453 Yan V Sun  19   20 Cristen J Willer  454   455   456
Affiliations
Meta-Analysis

The power of genetic diversity in genome-wide association studies of lipids

Sarah E Graham et al. Nature. 2021 Dec.

Erratum in

  • Author Correction: The power of genetic diversity in genome-wide association studies of lipids.
    Graham SE, Clarke SL, Wu KH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW, Locke AE, Marouli E, Hwang MY, Han S, Narita A, Choudhury A, Bentley AR, Ekoru K, Verma A, Trivedi B, Martin HC, Hunt KA, Hui Q, Klarin D, Zhu X, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Ruotsalainen SE, Havulinna AS, Veturi Y, Feng Q, Rosenthal EA, Lingren T, Pacheco JA, Pendergrass SA, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Hindy G, Rasheed A, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Willemsen G, Wood AR, Ji Y, Gao Z, Haworth S, Mitchell RE, Chai JF, Aadahl M, Yao J, Manichaikul A, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Sidore C, Fiorillo E, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Thuesen BH, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesl… See abstract for full author list ➔ Graham SE, et al. Nature. 2023 Jun;618(7965):E19-E20. doi: 10.1038/s41586-023-06194-2. Nature. 2023. PMID: 37237109 Free PMC article. No abstract available.

Abstract

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.

PubMed Disclaimer

Figures

Extended Data Figure 1:
Extended Data Figure 1:. Effect sizes of identified index variants from trans-ancestry meta-analysis
Index variants associated with a) HDL cholesterol, b) LDL cholesterol, c) triglycerides, d) nonHDL cholesterol and e) total cholesterol include both common variants of small to moderate effect and low frequency variants of moderate to large effect.
Extended Data Figure 2:
Extended Data Figure 2:. Comparison of the number of index variants by sample size
a) Comparison of the number of index variants reaching genome-wide significance (p < 5x10−8) from meta-analysis of LDL-C in each ancestry group. A meta-analysis of five random subsets of European cohorts selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 600,000, or 800,000 individuals is also shown. b) Comparison of chi-squared values from meta-analysis of LDL-C for each possible combination of ancestry groups (without genomic-control correction) for variants with minor allele frequency (MAF) ≥ 5%. The colored lines indicate a linear regression model of all meta-analyses for a specific ancestry (eg. all analyses including European individuals). c) Comparison of chi-squared values from meta-analysis of LDL-C for variants with MAF ≤ 5%. d) Comparison of chi-squared valued for variants with MAF ≥ 5% for LDL-C without genomic-control correction in a meta-analysis of all European cohorts as well as five subsets selected to reach sample sizes of approximately 100,000, 200,000, 400,000, 600,000, or 800,000 individuals.
Extended Data Figure 3:
Extended Data Figure 3:. Effect sizes by ancestry for unique index variants from ancestry-specific meta-analysis
Comparison of effect sizes and standard errors for variants reaching genome-wide significance (p-value < 5x10−8 as given by RAREMETAL) in both ancestry groups. Variants with discordant directions of effect between ancestries are labeled by chromosome and position (build 37). Association results for all index variants are given in Supplementary Table 3. The red line depicts an equivalent European ancestry and non-European ancestry effect size while the black line depicts a linear regression model. R2=0.93
Extended Data Figure 4:
Extended Data Figure 4:. Comparison of credible set size
The number of variants in the 99% credible sets for each association signal are compared between a) Admixed African ancestry and trans-ancestry analysis and b) European ancestry and trans-ancestry analysis
Extended Data Figure 5:
Extended Data Figure 5:. Overview of LDL-C polygenic score generation and validation
Polygenic scores were calculated separately in each ancestry group or in all ancestries combined using either pruning and thresholding or PRS-CS. The polygenic scores were then taken forward for testing in ancestry-matched participants followed by validation in independent data sets.
Extended Data Figure 6:
Extended Data Figure 6:. Optimal polygenic score threshold by ancestry group for either PRS-CS or pruning and thresholding based LDL-C polygenic scores
Adjusted R2 estimated upon testing in UK Biobank ancestry-matched participants (not included in GWAS summary statistics).
  1. Admixed African, East Asian and South Asian ancestry polygenic scores

  2. European and trans-ancestry polygenic scores

  3. European ancestry (GLGC 2010) and trans-ancestry polygenic scores

  4. All polygenic scores across all thresholds used for score construction

  5. Comparison of adjusted R2 across ancestry groups relative to the maximum for covariates alone, polygenic scores from PRS-CS or polygenic scores from pruning and thresholding

Extended Data Figure 7:
Extended Data Figure 7:. Comparison of PRS performance by admixture quartile
We divided the testing cohorts into quartiles by proportion of African ancestry and estimated the performance of the PRS separately within each quartile in a) the Michigan Genomics Initiative (N = 1,341) and b) in the Million Veteran Program (N = 18,251). Error bars represent 95% confidence intervals.
Extended Data Figure 8:
Extended Data Figure 8:. Improvement in PRS performance in African Americans when starting with ancestry-mismatched European ancestry scores by updating weights, updating variant lists, or updating both variants and weights to be ancestry-matched.
By comparison to the gold-standard performance of the trans-ancestry-derived PRS in African Americans (adjusted R2 = 0.12), a European ancestry derived score capture only 47% of the variance explained by the trans-ancestry PRS. When LD and association information from the target population is used to optimize the list of variants for inclusion in the PRS, but with ancestry-mismatched weights from European ancestry GWAS, the variance explained reaches 71% of the gold standard. If the PRS variant list selected in European ancestry individuals were genotyped in the target population, and PRS weights were updated using a GWAS from the target population, the variance explained reached 87% of the gold standard. Finally, deriving both the marker list and weights from the target population (single-ancestry GWAS) explained 94% of the variance relative to the gold-standard trans-ancestry PRS.
Figure 1:
Figure 1:. Comparison of identified loci across ancestry groups
a) Allele frequency distribution and b) effect sizes of Admixed African ancestry index variants in non-African ancestry populations. c) Allele frequency distribution and d) effect sizes of European ancestry index variants in non-European ancestry populations. Boxplots depict the median value as the center, first and third quartiles as box boundaries and whiskers extending 1.5 times the inter-quartile range, with points beyond this region shown individually. Sample sizes for each ancestry are provided in Table 1. The mean effect size of Admixed African ancestry identified index variants is larger than from European ancestry analysis, reflecting the difference in power to detect an association within each group as a result of the >10-fold difference in sample size. e) Number of loci identified within each ancestry group, normalized to a constant sample size of 100,000 individuals and averaged across lipid traits. At currently available sample sizes, trans-ancestry and European ancestry analyses identify a lower proportion of loci relative to the number of individuals than analyses of other ancestry groups. However, the larger sample size of European or trans-ancestry analyses leads to a greater relative proportion of novel loci and a higher proportion of loci significant only in European ancestry analyses. f) Proportion of index variants identified from each ancestry-specific meta-analysis that would be well-powered to detect an association of the same effect size but with ancestry-specific frequencies in the other ancestry groups. Dark blue regions indicate variants likely to be detected at an equivalent sample size only in the original ancestry group (i.e. ancestry-specific). Additional comparisons of allele frequencies and effect sizes across ancestries are provided in Supplementary Figure 3.
Figure 2:
Figure 2:. Inclusion of multiple ancestries drives improved fine-mapping
a) Association of the DMTN intron variant rs900776 with LDL-C or b) DMTN expression. The region spanned by the 99% credible sets are shown in the center box. The LDL-C association signal significantly colocalizes with the GTEx eQTL signal of DMTN in liver. c) The LD patterns for variants in the European ancestry 99% credible set differ greatly between African and European ancestry individuals in 1000 Genomes. The lead variant has a posterior probability of 0.86 in Admixed African, 0.51 in European, and >0.99 in the trans-ancestry analysis.
Figure 3:
Figure 3:. Trans-ancestry LDL-C PRS show similar performance across ancestry groups
a) Polygenic scores generated from trans-ancestry meta-analysis show equivalent or better performance across most ancestry groups relative to ancestry-specific PRS within each cohort, whereas European ancestry-specific scores show less transferability. Adjusted R2 is calculated with the risk score as a predictor of LDL-C in a linear model with covariates. AFR: African, AFRAMR: African American, ASN: Asian American b) Trans-ancestry scores derived from equal proportions of each ancestry group predict LDL-C better for African Americans in MGI than predominantly European ancestry scores at constant sample size. Error bars depict 95% confidence intervals. Sample sizes for each cohort are provided in Supplementary Table 16.

Comment in

References

    1. Taddei C et al. Repositioning of the global epicentre of non-optimal cholesterol. Nature 582, 73–77, doi:10.1038/s41586-020-2338-1 (2020). - DOI - PMC - PubMed
    1. Ference BA et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38, 2459–2472, doi:10.1093/eurheartj/ehx144 (2017). - DOI - PMC - PubMed
    1. Roth GA et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392, 1736–1788, doi:10.1016/S0140-6736(18)32203-7 (2018). - DOI - PMC - PubMed
    1. Teslovich TM et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713, doi:10.1038/nature09270 (2010). - DOI - PMC - PubMed
    1. Willer CJ et al. Discovery and refinement of loci associated with lipid levels. Nature genetics 45, 1274–1283, doi:10.1038/ng.2797 (2013). - DOI - PMC - PubMed

Methods References

    1. Das S et al. Next-generation genotype imputation service and methods. Nature genetics 48, 1284–1287, doi:10.1038/ng.3656 (2016). - DOI - PMC - PubMed
    1. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. The Lancet 366, 1267–1278, doi:10.1016/S0140-6736(05)67394-1 (2005). - DOI - PubMed
    1. Loh P-R et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nature genetics 47, 284–290, doi:10.1038/ng.3190 (2015). - DOI - PMC - PubMed
    1. Zhou W et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nature genetics 50, 1335–1341, doi:10.1038/s41588-018-0184-y (2018). - DOI - PMC - PubMed
    1. Winkler TW et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc 9, 1192–1212, doi:10.1038/nprot.2014.071 (2014). - DOI - PMC - PubMed

Publication types

MeSH terms

Grants and funding