Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov:2021:722-725.
doi: 10.1109/EMBC46164.2021.9630196.

High Frequential Resolution Networks: Considerations on a New Functional Brain Connectivity Framework

High Frequential Resolution Networks: Considerations on a New Functional Brain Connectivity Framework

Victor Rodriguez-Gonzalez et al. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov.

Abstract

Connectivity analyses are widely used to assess the interaction brain networks. This type of analyses is usually conducted considering the well-known classical frequency bands: delta, theta, alpha, beta, and gamma. However, this parcellation of the frequency content can bias the analyses, since it does not consider the between-subject variability or the particular idiosyncrasies of the connectivity patterns that occur within a band. In this study, we addressed these limitations by introducing the High Frequential Resolution Networks (HFRNs). HFRNs were constructed, using a narrow-bandwidth FIR bank filter of 1 Hz bandwidth, for two different connectivity metrics (Amplitude Envelope Correlation, AEC, and Phase Lag index, PLI) and for 3 different databases of MEG and EEG recordings. Results showed a noticeable similarity between the frequential evolution of PLI, AEC, and the Power Spectral Density (PSD) from MEG and EEG signals. Nonetheless, some technical remarks should be considered: (i) results at the gamma band should exclude the frequency range around 50 Hz due to abnormal connectivity patterns, consequence of the previously applied 50 Hz notch-filter; (ii) HFRNs patterns barely vary with the connection distance; and (iii) a low sampling frequency can exert a remarkable influence on HFRNs. To conclude, we proposed a new framework to perform connectivity analyses that allow to further analyze the frequency-based distribution of brain networks.

PubMed Disclaimer

Publication types

LinkOut - more resources