Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov:2021:3025-3028.
doi: 10.1109/EMBC46164.2021.9631057.

Learning-Based Median Nerve Segmentation From Ultrasound Images For Carpal Tunnel Syndrome Evaluation

Learning-Based Median Nerve Segmentation From Ultrasound Images For Carpal Tunnel Syndrome Evaluation

Mariachiara Di Cosmo et al. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov.

Abstract

Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy. Ultrasound imaging (US) may help to diagnose and assess CTS, through the evaluation of median nerve morphology. To support sonographers, this paper proposes a fully-automatic deep-learning approach to median nerve segmentation from US images. The approach relies on Mask R-CNN, a convolutional neural network that is trained end-to-end. The segmentation head of Mask R-CNN is here evaluated with three different configurations, with the goal of studying the effect of the segmentation-head output resolution on the overall Mask R-CNN segmentation performance. For this study, we collected and annotated a dataset of 151 images acquired in the actual clinical practice from 53 subjects with CTS. To our knowledge, this is the largest dataset in the field in terms of subjects. We achieved a median Dice similarity coefficient equal to 0.931 (IQR = 0.027), demonstrating the potentiality of the proposed approach. These results are a promising step towards providing an effective tool for CTS assessment in the actual clinical practice.

PubMed Disclaimer

MeSH terms

LinkOut - more resources