Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov:2021:4374-4378.
doi: 10.1109/EMBC46164.2021.9629493.

Modeling Pharmacokinetics of Doxorubicin in Multiple Myeloma Cells

Modeling Pharmacokinetics of Doxorubicin in Multiple Myeloma Cells

Alberto Giaretta et al. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov.

Abstract

Doxorubicin (DOXO) is a well-established chemotherapy drug for treatment of different tumors, ranging from breast cancer, melanoma to multiple myeloma (MM). Here, we present a coupled experimental/modeling approach to study DOXO pharmacokinetics in MM cells, investigate its distribution among the extracellular and intracellular compartments during time. Three model candidates are considered and identified. Model selection is performed based on its ability to describe the data both qualitatively and in terms of quantitative indexes. The most parsimonious model consists of a nonlinear structure with a saturation-threshold control of intracellular DOXO efflux by the DOXO bound to the cellular DNA. This structure could explain the hypothesis that MM cells are drug-resistant, likely due to the involvement of P-glycoproteins.The proposed model is able to predict the intracellular (free and bound) DOXO and suggests the presence of a saturation-threshold drug-resistant mechanism.Clinical Relevance- The model can be used to properly understand and guide further experimental setup, e.g., to investigate multiple myeloma cell variability among different cell lines.

PubMed Disclaimer

Publication types

LinkOut - more resources