Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:57:102636.
doi: 10.1016/j.fsigen.2021.102636. Epub 2021 Nov 24.

Extended kinship analysis of historical remains using SNP capture

Affiliations
Free article

Extended kinship analysis of historical remains using SNP capture

Erin M Gorden et al. Forensic Sci Int Genet. 2022 Mar.
Free article

Abstract

DNA-assisted identification of historical remains requires the genetic analysis of highly degraded DNA, along with a comparison to DNA from known relatives. This can be achieved by targeting single nucleotide polymorphisms (SNPs) using a hybridization capture and next-generation sequencing approach suitable for degraded skeletal samples. In the present study, two SNP capture panels were designed to target ~ 25,000 (25 K) and ~ 95,000 (95 K) nuclear SNPs, respectively, to enable distant kinship estimation (up to 4th degree relatives). Low-coverage SNP data were successfully recovered from 14 skeletal elements 75 years postmortem using an Illumina MiSeq benchtop sequencer. All samples contained degraded DNA but were of varying quality with mean fragment lengths ranging from 32 bp to 170 bp across the 14 samples. SNP comparison with DNA from known family references was performed in the Parabon Fx Forensic Analysis Platform, which utilizes a likelihood approach for kinship prediction that was optimized for low-coverage sequencing data with cytosine deamination. The 25 K panel produced 15,000 SNPs on average, which allowed for accurate kinship prediction with strong statistical support in 16 of the 21 pairwise comparisons. The 95 K panel increased the average SNPs to 42,000 and resulted in an additional accurate kinship prediction with strong statistical support (17 of 21 pairwise comparisons). This study demonstrates that SNP capture combined with massively parallel sequencing on a benchtop platform can yield sufficient SNP recovery from compromised samples, enabling accurate, extended kinship predictions.

Keywords: Degraded DNA; Extended kinship; Historical remains; Hybridization capture; Massively parallel sequencing (MPS); Single nucleotide polymorphism (SNP).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources