Multicenter study evaluating one multiplex RT-PCR assay to detect SARS-CoV-2, influenza A/B, and respiratory syncytia virus using the LabTurbo AIO open platform: epidemiological features, automated sample-to-result, and high-throughput testing
- PMID: 34897035
- PMCID: PMC8714143
- DOI: 10.18632/aging.203761
Multicenter study evaluating one multiplex RT-PCR assay to detect SARS-CoV-2, influenza A/B, and respiratory syncytia virus using the LabTurbo AIO open platform: epidemiological features, automated sample-to-result, and high-throughput testing
Abstract
Since the Coronavirus 19 (COVID-19) pandemic, several SARS-CoV-2 variants of concern (SARS-CoV-2 VOC) have been reported. The B.1.1.7 variant has been associated with increased mortality and transmission risk. Furthermore, cluster and possible co-infection cases could occur in the next influenza season or COVID-19 pandemic wave, warranting efficient diagnosis and treatment decision making. Here, we aimed to detect SARS-CoV-2 and other common respiratory viruses using multiplex RT-PCR developed on the LabTurbo AIO 48 open system. We performed a multicenter study to evaluate the performance and analytical sensitivity of the LabTurbo AIO 48 system for SARS-CoV-2, influenza A/B, and respiratory syncytial virus (RSV) using 652 nasopharyngeal swab clinical samples from patients. The LabTurbo AIO 48 system demonstrated a sensitivity of 9.4 copies/per PCR for N2 of SARS-CoV-2; 24 copies/per PCR for M of influenza A and B; and 24 copies/per PCR for N of RSV. The assay presented consistent performance in the multicenter study. The multiplex RT-PCR applied on the LabTurbo AIO 48 open platform provided highly sensitive, robust, and accurate results and enabled high-throughput detection of B.1.1.7, influenza A/B, and RSV with short turnaround times. Therefore, this automated molecular diagnostic assay could enable streamlined testing if COVID-19 becomes a seasonal disease.
Keywords: B.1.1.7 variant; COVID-19; SARS-CoV-2; SARS-CoV-2 VOC; multiplex testing.
Conflict of interest statement
Figures
References
-
- Kidd M, Richter A, Best A, Cumley N, Mirza J, Percival B, Mayhew M, Megram O, Ashford F, White T, Moles-Garcia E, Crawford L, Bosworth A, et al. S-Variant SARS-CoV-2 Lineage B1.1.7 Is Associated With Significantly Higher Viral Load in Samples Tested by TaqPath Polymerase Chain Reaction. J Infect Dis. 2021; 223:1666–70. 10.1093/infdis/jiab082 - DOI - PMC - PubMed
-
- Nordling TEM, Wu YH. Taiwan on track to end third COVID-19 community outbreak. medRxiv. 2021. [Preprint]. 10.1101/2021.06.20.21259178 - DOI
-
- Perng CL, Jian MJ, Chang CK, Lin JC, Yeh KM, Chen CW, Chiu SK, Chung HY, Wang YH, Liao SJ, Li SY, Hsieh SS, Tsai SH, et al. Novel rapid identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by real-time RT-PCR using BD Max Open System in Taiwan. PeerJ. 2020; 8:e9318. 10.7717/peerj.9318 - DOI - PMC - PubMed
Publication types
MeSH terms
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
