Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar;61(3):269-280.
doi: 10.1002/mc.23378. Epub 2021 Dec 12.

Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy

Affiliations
Review

Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy

Maryam Noor Rizwan et al. Mol Carcinog. 2022 Mar.

Abstract

Exosomes represent extracellular vesicles of endocytic origin ranging from 30 to 100 nm that are released by most of eukaryotic cells and can be found in body fluids. These vesicles in carrying DNA, RNA, microRNA (miRNA), Long noncoding RNA, proteins, and lipids serve as intercellular communicators. Due to their role in crosstalk between tumor cells and mesenchymal stroma cells, they are vital for tumor growth, progression, and anticancer drug resistance. Lung cancer is a global leading cause of cancer-related deaths with 5-year survival rates of about 7% in patients with distant metastasis. Although the implementation of targeted therapy has improved the clinical outcome of nonsmall cell lung cancer, drug resistance remains a major obstacle. Lung tumor-derived exosomes (TDEs) conveying molecular information from tumor cells to their neighbor cells or cells at distant sites of the body activate the tumor microenvironment (TME) and facilitate tumor metastasis. Exosomal miRNAs are also considered as noninvasive biomarkers for early diagnosis of lung cancer. This review summarizes the influence of lung TDEs on the TME and metastasis. Their involvement in targeted therapy resistance and potential clinical applications are discussed. Additionally, challenges encountered in the development of exosome-based therapeutic strategies are addressed.

Keywords: exosome; lung cancer; metastasis; microRNA; targeted therapy; the tumor microenvironment.

PubMed Disclaimer

References

REFERENCES

    1. Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-1668.
    1. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329-339.
    1. Ciechanover A, Schwartz AL, Dautry-Varsat A, Lodish HF. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983;258(16):9681-9689.
    1. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412-9420.
    1. Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81(1):2-10.

Publication types

MeSH terms

LinkOut - more resources