Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans
- PMID: 34909148
- PMCID: PMC8612406
- DOI: 10.1039/d1sc04088j
Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans
Abstract
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Phosphonite mediated 1,3-dipolar cycloaddition: a route to polycyclic 2-pyrrolines from imines, acid chlorides and alkenes.Chem Commun (Camb). 2013 Jan 30;49(9):883-5. doi: 10.1039/c2cc38274a. Chem Commun (Camb). 2013. PMID: 23238234
-
Phospha-Münchnones: electronic structures and 1,3-dipolar cycloadditions.J Org Chem. 2010 Jun 18;75(12):4261-73. doi: 10.1021/jo1008383. J Org Chem. 2010. PMID: 20481447
-
Development and Cycloaddition Reactivity of a New Class of Pyridine-Based Mesoionic 1,3-Dipole.Angew Chem Int Ed Engl. 2017 May 22;56(22):6078-6082. doi: 10.1002/anie.201609726. Epub 2016 Dec 22. Angew Chem Int Ed Engl. 2017. PMID: 28004875
-
Recent advances in 1,3-dipolar cycloaddition reactions on solid supports.Mol Divers. 2005;9(1-3):187-207. doi: 10.1007/s11030-005-1339-1. Mol Divers. 2005. PMID: 15789565 Review.
-
Electrophilic Azides for Materials Synthesis and Chemical Biology.Acc Chem Res. 2020 Apr 21;53(4):937-948. doi: 10.1021/acs.accounts.0c00046. Epub 2020 Mar 24. Acc Chem Res. 2020. PMID: 32207916 Review.
References
-
- Ramapanicker R., Chauhan P., Click Chemistry: Mechanistic and Synthetic Perspectives,in Click Reactions in Organic Synthesis, ed. S. Chansekaran, Wiley-VCH, Weinheim, Germany, 2016, pp. 1–24
- Kolb H. C. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. - DOI - PubMed
- Mamidyala S. K. Finn M. G. Chem. Soc. Rev. 2010;39:1252–1261. doi: 10.1039/B901969N. - DOI - PubMed
- Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013;113:4905–4979. doi: 10.1021/cr200409f. - DOI - PubMed
- Cañeque T. Müller S. Rodriguez R. Nat. Rev. Chem. 2018;2:202–215. doi: 10.1038/s41570-018-0030-x. - DOI
-
-
For reviews:
- Gingrich H. L., Baum J. S., MesoionicOxazolesin Oxazoles, The Chemistry of Heterocyclic Compounds, vol. 45, ed. I. J. Turchi, Wiley, New York, 1986, pp. 731–922
- Arndtsen B. A. Chem.–Eur. J. 2009;15:302–313. doi: 10.1002/chem.200800767. - DOI - PubMed
- Gribble G. W., Mesoionic Ring Systems, in Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, ed. A. Padwa, W. H. Pearson, John Wiley & Sons, Inc, 2003, pp. 681–753
-
-
-
For recent examples:
- Erguven H. Leitch D. C. Keyzer E. N. Arndtsen B. A. Angew. Chem., Int. Ed. 2017;56:6078–6082. doi: 10.1002/anie.201609726. - DOI - PubMed
- Champagne P. A. Houk H. N. J. Org. Chem. 2017;82:10980–10988. doi: 10.1021/acs.joc.7b01928. - DOI - PMC - PubMed
- Yen-Pon E. Champagne P. A. Plougastel L. Gabillet S. Thuéry P. Johnson M. Muller G. pieters G. Taran F. Houk K. N. Audisio D. J. Am. Chem. Soc. 2019;141:1435–1440. doi: 10.1021/jacs.8b11465. - DOI - PMC - PubMed
- Shennan B. D. A. Smith P. W. Ogura Y. Dixon D. J. Chem. Sci. 2020;11:10354–10360. doi: 10.1039/D0SC03676E. - DOI - PMC - PubMed
- Allen M. A. Ivanovich R. A. Beauchemin A. M. Angew. Chem., Int. Ed. 2020;59:23188–23197. doi: 10.1002/anie.202007942. - DOI - PubMed
- Guo R. Jiang J. Hu C. Liu L. L. Cui P. Zhao M. Ke Z. Tung C.-H. Kong L. Chem. Sci. 2020;11:7053–7059. doi: 10.1039/D0SC02162H. - DOI - PMC - PubMed
- Campeau D. Pommainville A. Gagosz F. J. Am. Chem. Soc. 2021;143:9601–9611. doi: 10.1021/jacs.1c04051. - DOI - PubMed
- Ezawa T. Sohtome Y. Hashizume D. Adachi M. Akakabe M. Koshino H. Sodeoka M. J. Am. Chem. Soc. 2021;143:9094–9104. doi: 10.1021/jacs.1c02833. - DOI - PubMed
-
LinkOut - more resources
Full Text Sources