Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 27;12(45):15077-15083.
doi: 10.1039/d1sc04088j. eCollection 2021 Nov 24.

Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans

Affiliations

Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans

Huseyin Erguven et al. Chem Sci. .

Abstract

A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Cycloaddition approaches to furan derivatives and design of a new phosphorus-based 1,3-dipolar cycloaddition reagent.
Fig. 2
Fig. 2. Characterization of the phosphorus-containing 1,3-dipole 1.
Fig. 3
Fig. 3. Synthesis of oligomeric furans and oxazoles via 1,3-dipolar cycloaddition with 1.

Similar articles

References

    1. Breugst M. Reissig H. U. Angew. Chem., Int. Ed. 2020;59:12293–12307. doi: 10.1002/anie.202003115. - DOI - PMC - PubMed
    2. Padwa A.,Pearson W. H., Synthetic Applications of 1,3-dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons, Inc., 2002
    1. Ramapanicker R., Chauhan P., Click Chemistry: Mechanistic and Synthetic Perspectives,in Click Reactions in Organic Synthesis, ed. S. Chansekaran, Wiley-VCH, Weinheim, Germany, 2016, pp. 1–24
    2. Kolb H. C. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. - DOI - PubMed
    3. Mamidyala S. K. Finn M. G. Chem. Soc. Rev. 2010;39:1252–1261. doi: 10.1039/B901969N. - DOI - PubMed
    4. Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013;113:4905–4979. doi: 10.1021/cr200409f. - DOI - PubMed
    5. Cañeque T. Müller S. Rodriguez R. Nat. Rev. Chem. 2018;2:202–215. doi: 10.1038/s41570-018-0030-x. - DOI
    1. For reviews:

    2. Gingrich H. L., Baum J. S., MesoionicOxazolesin Oxazoles, The Chemistry of Heterocyclic Compounds, vol. 45, ed. I. J. Turchi, Wiley, New York, 1986, pp. 731–922
    3. Arndtsen B. A. Chem.–Eur. J. 2009;15:302–313. doi: 10.1002/chem.200800767. - DOI - PubMed
    4. Gribble G. W., Mesoionic Ring Systems, in Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, ed. A. Padwa, W. H. Pearson, John Wiley & Sons, Inc, 2003, pp. 681–753
    1. For recent examples:

    2. Erguven H. Leitch D. C. Keyzer E. N. Arndtsen B. A. Angew. Chem., Int. Ed. 2017;56:6078–6082. doi: 10.1002/anie.201609726. - DOI - PubMed
    3. Champagne P. A. Houk H. N. J. Org. Chem. 2017;82:10980–10988. doi: 10.1021/acs.joc.7b01928. - DOI - PMC - PubMed
    4. Yen-Pon E. Champagne P. A. Plougastel L. Gabillet S. Thuéry P. Johnson M. Muller G. pieters G. Taran F. Houk K. N. Audisio D. J. Am. Chem. Soc. 2019;141:1435–1440. doi: 10.1021/jacs.8b11465. - DOI - PMC - PubMed
    5. Shennan B. D. A. Smith P. W. Ogura Y. Dixon D. J. Chem. Sci. 2020;11:10354–10360. doi: 10.1039/D0SC03676E. - DOI - PMC - PubMed
    6. Allen M. A. Ivanovich R. A. Beauchemin A. M. Angew. Chem., Int. Ed. 2020;59:23188–23197. doi: 10.1002/anie.202007942. - DOI - PubMed
    7. Guo R. Jiang J. Hu C. Liu L. L. Cui P. Zhao M. Ke Z. Tung C.-H. Kong L. Chem. Sci. 2020;11:7053–7059. doi: 10.1039/D0SC02162H. - DOI - PMC - PubMed
    8. Campeau D. Pommainville A. Gagosz F. J. Am. Chem. Soc. 2021;143:9601–9611. doi: 10.1021/jacs.1c04051. - DOI - PubMed
    9. Ezawa T. Sohtome Y. Hashizume D. Adachi M. Akakabe M. Koshino H. Sodeoka M. J. Am. Chem. Soc. 2021;143:9094–9104. doi: 10.1021/jacs.1c02833. - DOI - PubMed
    1. Sperry J. B. Wright D. L. Curr. Opin. Drug Discovery Dev. 2005;8:723–740. - PubMed
    2. Wu Y.-J. Prog. Heterocycl.Chem. 2012;24:1–53. doi: 10.1016/B978-0-08-096807-0.00001-4. - DOI