Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2021 Dec 7:2021.12.06.21267328.
doi: 10.1101/2021.12.06.21267328.

Comprehensive Serological Profile and Specificity of Maternal and Neonatal Cord Blood SARS CoV-2 Antibodies

Comprehensive Serological Profile and Specificity of Maternal and Neonatal Cord Blood SARS CoV-2 Antibodies

Rupsa C Boelig et al. medRxiv. .

Update in

Abstract

Objective: To describe the profile and specificity of maternal and neonatal cord-blood antibody profile in response SARS-CoV-2 virus exposure.

Methods: This is a Prospective cohort study of delivering patients at Thomas Jefferson University Hospital from April 2020-February 2021. Primary objective was to describe unique maternal and fetal antibody epitope titers and specificity in those patients with COVID-19 history. Serologic profile assessed with a multiplex platform. Antigens used were: HA-trimer Influenza A (Hong Kong H3), spike trimers for SARS-CoV-2, SARS-CoV-1, MERS-CoV, and betacoronaviruses HKU-1 and OC43, as well as the spike N-terminal domain (NTD), spike receptor binding domain (RBD), and nucleocapsid protein (N; full length) for SARS-CoV-2.

Results: 112 maternal samples and 101 maternal and cord blood pairs were analyzed. Thirty-seven had a known history of COVID-19 (positive PCR test) in the pregnancy and of those, 17 (47%) were diagnosed with COVID-19 within 30 days of delivery. Fifteen of remaining seventy-six (20%) without a known diagnosis had positive maternal serology. For those with history of COVID-19 we identified robust IgG response in maternal blood to CoV2 nucleocapsid (N), spike (S) full-length and S (RBD) antigens with more modest responses to the S (NTD) antigen. By contrast, the maternal blood IgM response appeared more specific to S (full-length), than N, S (RBD) or S (NTD) epitopes. There were significantly higher maternal and cord blood IgG response not just to CoV2 spike (p < 10 -18 ), but also CoV1 spike (p < 10 -9 ) and MERS spike (p < 10 -8 ). By contrast, maternal IgM responses were more specific to CoV2 (p < 10 -19 ), but to a lesser degree for CoV1 (p < 10 -5 ), and no significant differences for MERS. Maternal and cord-blood IgG were highly correlated for both S and N (R 2 = 0.96 and 0.94).

Conclusions: Placental transfer is efficient, with robust N and S responses. Both nucleocapsid and spike antibody responses should be studied for a better understanding of COVID-19 immunity. IgG antibodies are cross reactive with related CoV-1 and MERS spike epitopes while IgM, which cannot cross placenta to provide neonatal passive immunity, is more SARS CoV-2 specific. Neonatal cord blood may have significantly different fine-specificity than maternal blood, despite the high efficiency of IgG transfer.

PubMed Disclaimer

Publication types

LinkOut - more resources