Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;9(5):1001-1013.
doi: 10.1089/soro.2021.0016. Epub 2021 Dec 16.

Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots

Affiliations

Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots

Boyu Zhang et al. Soft Robot. 2022 Oct.

Abstract

Pneumatic soft robots are of great interest in varieties of potential applications due to their unique capabilities compared with rigid structures. As a part of the soft robotic system, the pneumatic system plays a very important role as all motion performance is ultimately related to the pressure control in air chambers. With the increasing flexibility and complexity of robotic tasks, diverse pneumatic robots driven by positive, negative, or even hybrid pressure are developed, and this comes with higher requirements of pneumatic system and air pressure control precision. In this study, we aim to propose a simplified pneumatic design capable of generating programmable pressure states ranging from negative to positive pressure in each air branch. Based on the design concept and system configuration, special inflation and deflation strategies and closed-loop feedback control strategy are proposed to achieve precise pressure control. Then, a prototype of the pneumatic system with six independent air supply branches is designed and fabricated. Experimental results show that the pneumatic system can achieve a wide range of pressure from -59 to 112 kPa. The speed of inflation and deflation is controllable. Finally, we demonstrate three robotic applications and design the related algorithms to verify the feasibility and practicability of the pneumatic system. Our proposed pneumatic design can satisfy the pressure control requirements of a variety of soft robots driven by both positive and negative pressure. It can be used as a universal pneumatic platform, which is inspiring for actuation and control in the soft robotic field.

Keywords: closed-loop pressure control; pneumatic system; programmable pressure supply; soft robot.

PubMed Disclaimer

LinkOut - more resources