Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar;95(3):e13128.
doi: 10.1111/sji.13128. Epub 2021 Dec 27.

Intranasal delivery of a cDC1 targeted influenza vaccine with poly(I:C) enhances T cell responses and protects against influenza infection

Affiliations
Free article

Intranasal delivery of a cDC1 targeted influenza vaccine with poly(I:C) enhances T cell responses and protects against influenza infection

Anna Lysén et al. Scand J Immunol. 2022 Mar.
Free article

Abstract

Targeting antigens to dendritic cells represent a promising method for enhancing immune responses against specific antigens. However, many studies have focused on systemic delivery (intravenous or intraperitoneally) of targeted antigen, approaches that are not easily transferable to humans. Here we evaluate the efficacy of an influenza vaccine targeting Xcr1+ cDC1 administered by intranasal immunization. Intranasal delivery of antigen fused to the chemokine Xcl1, the ligand of Xcr1, resulted in specific uptake by lung CD103+ cDC1. Interestingly, intranasal immunization with influenza A/PR/8/34 haemagglutinin (HA) fused to Xcl1, formulated with poly(I:C), resulted in enhanced induction of antigen-specific IFNγ+ CD4+ and IFNγ+ CD8+ T cell responses in lung compared non-targeted anti-NIP-HA (αNIP-HA). Induction of antibody responses was, however, similar in Xcl1-HA and αNIP-HA immunized mice, but significantly higher than in mice immunized with monomeric HA. Both Xcl1-HA and αNIP-HA vaccines induced full protection when mice were challenged with a lethal dose of influenza PR8 virus, reflecting the strong induction of HA-specific antibodies. Our results demonstrate that i.n. delivery of Xcl1-HA is a promising vaccine strategy for enhancing T cell responses in addition to inducing strong antibody responses.

Keywords: Xcl1; Xcr1; dendritic cell; influenza; intranasal immunization.

PubMed Disclaimer

References

REFERENCES

    1. Belshe RB, Edwards KM, Vesikari T, et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med. 2007;356:685-696.
    1. Fleming DM, Crovari P, Wahn U, et al. Comparison of the efficacy and safety of live attenuated cold-adapted influenza vaccine, trivalent, with trivalent inactivated influenza virus vaccine in children and adolescents with asthma. Pediatr Infect Dis J. 2006;25:860-869.
    1. Ashkenazi S, Vertruyen A, Aristegui J, et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. Pediatr Infect Dis J. 2006;25:870-879.
    1. De Villiers PJ, Steele AD, Hiemstra LA, et al. Efficacy and safety of a live attenuated influenza vaccine in adults 60 years of age and older. Vaccine. 2009;28:228-234.
    1. Forrest BD, Steele AD, Hiemstra L, et al. A prospective, randomized, open-label trial comparing the safety and efficacy of trivalent live attenuated and inactivated influenza vaccines in adults 60 years of age and older. Vaccine. 2011;29:3633-3639.

MeSH terms