Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 29;6(49):34044-34055.
doi: 10.1021/acsomega.1c05455. eCollection 2021 Dec 14.

Hypervalent Iodine(III)-Promoted C3-H Regioselective Halogenation of 4-Quinolones under Mild Conditions

Affiliations

Hypervalent Iodine(III)-Promoted C3-H Regioselective Halogenation of 4-Quinolones under Mild Conditions

Fang Yang et al. ACS Omega. .

Abstract

A simple and practical protocol for the C3-H regioselective halogenation of 4-quinolones by the action of potassium halide salt and PIFA/PIDA in good to excellent yields was developed. The current approach provides feasible access to the diversity of C3-halgenated 4-quinolones at room temperature with high regioselectivity and good functional group tolerance, from which bioactive compounds can be easily constructed. Moreover, the current method featured eco-friendly, operational convenience and is suitable for halogenation in a gram scale of 4-quinolones in water without sacrificing yields.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Representative active molecules containing 4-quinolone motifs.
Scheme 1
Scheme 1. (a–d) Strategies for the Direct C3–H Functionalization of 4-Quinolones
Scheme 2
Scheme 2. Gram-Scale Preparation of 3-Halo-4-quinolones in Water
Scheme 3
Scheme 3. (a–d) Controlled Experiments and Plausible Reaction Mechanism

References

    1. Petrone D. A.; Ye J.; Lautens M. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation. Chem. Rev. 2016, 116, 8003–8104. 10.1021/acs.chemrev.6b00089. - DOI - PubMed
    1. Lim Y. J.; Kuang Y.; Wu J.; Yao S. Q. Late-Stage C(sp2)–H Functionalization: A Powerful Toolkit to Arm Natural Products for In Situ Proteome Profiling. Chem. – Eur. J. 2021, 27, 3575–3580. 10.1002/chem.202004373. - DOI - PubMed
    2. Cernak T.; Dykstra K. D.; Tyagarajan S.; Vachal P.; Krska S. W. The Medicinal Chemist’s Toolbox for Late-Stage Functionalization of Drug-Like Molecules. Chem. Soc. Rev. 2016, 45, 546–576. 10.1039/C5CS00628G. - DOI - PubMed
    3. Moir M.; Danon J. J.; Reekie T. A.; Kassiou M. An Overview of Late-Stage Functionalization in Today’s Drug Discovery. Expert Opin. Drug Dis. 2019, 14, 1137–1149. 10.1080/17460441.2019.1653850. - DOI - PubMed
    1. Dohi T.; Kita Y. Hypervalent Iodine Reagents as a New Entrance to Organocatalysts. Chem. Commun. 2009, 16, 2073–2085. 10.1039/b821747e. - DOI - PubMed
    1. Granados A.; Jia Z.; del Olmo M.; Vallribera A. In situ Generation of Hypervalent Iodine Reagents for the Electrophilic Chlorination of Arenes. Eur. J. Org. Chem. 2019, 2019, 2812–2818. 10.1002/ejoc.201900237. - DOI
    2. Granados A.; Shafir A.; Arrieta A.; Cossío F. P.; Vallribera A. Stepwise Mechanism for the Bromination of Arenes by a Hypervalent Iodine Reagent. J. Org. Chem. 2020, 85, 2142–2150. 10.1021/acs.joc.9b02784. - DOI - PubMed
    3. Han Z. Z.; Zhang C. P. Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Adv. Synth. Catal. 2020, 362, 4256–4292. 10.1002/adsc.202000750. - DOI
    4. Himabindu V.; Parvathaneni S. P.; Rao V. J. PhI(OAc)2/NaX-Mediated Halogenation Providing Access to Valuable Synthons 3-Haloindole Derivatives. New J. Chem. 2018, 42, 18889–18893. 10.1039/C8NJ03822H. - DOI
    5. Mudithanapelli C.; Kim M. H. Metal-free Late-Stage C(sp2)–H Functionalization of N-aryl Amines with Various Sodium Salts. Org. Biomol. Chem. 2020, 18, 450–464. 10.1039/C9OB02217A. - DOI - PubMed
    6. Nahide P. D.; Ramadoss V.; Juárez-Ornelas K. A.; Satkar Y.; Ortiz-Alvarado R.; Cervera-Villanueva J. M. J.; Alonso-Castro Á. J.; Zapata-Morales J. R.; Ramírez-Morales M. A.; Ruiz-Padilla A. J.; Deveze-Álvarez M. A.; Solorio-Alvarado C. R. In Situ Formed I(III)-Based Reagent for the Electrophilicortho-Chlorination of Phenols and Phenol Ethers: The Use of PIFA-AlCl3 System. Eur. J. Org. Chem. 2018, 2018, 485–493. 10.1002/ejoc.201701399. - DOI
    7. Wang M.; Zhang Y.; Wang T.; Wang C.; Xue D.; Xiao J. Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Org. Lett. 2016, 18, 1976–1979. 10.1021/acs.orglett.6b00547. - DOI - PubMed
    8. Peilleron L.; Grayfer T. D.; Dubois J.; Dodd R. H.; Cariou K. Iodine(III)-Mediated Halogenations of Acyclic Monoterpenoids. Beilstein J. Org. Chem. 2018, 14, 1103–1111. 10.3762/bjoc.14.96. - DOI - PMC - PubMed
    1. He Y.; Huang L.; Xie L.; Liu P.; Wei Q.; Mao F.; Zhang X.; Huang J.; Chen S.; Huang C. Palladium-Catalyzed C–H Bond Functionalization Reactions Using Phosphate/Sulfonate Hypervalent Iodine Reagents. J. Org. Chem. 2019, 84, 10088–10101. 10.1021/acs.joc.9b01278. - DOI - PubMed
    2. Li G. X.; Morales-Rivera C. A.; Gao F.; Wang Y.; He G.; Liu P.; Chen G. A Unified Photoredox-Catalysis Strategy for C(sp3)–H Hydroxylation and Amidation Using Hypervalent Iodine. Chem. Sci. 2017, 8, 7180–7185. 10.1039/C7SC02773G. - DOI - PMC - PubMed

LinkOut - more resources