Substrate Engineering for CVD Growth of Single Crystal Graphene
- PMID: 34928093
- DOI: 10.1002/smtd.202001213
Substrate Engineering for CVD Growth of Single Crystal Graphene
Abstract
Single crystal graphene (SCG) has attracted enormous attention for its unique potential for next-generation high-performance optoelectronics. In the absence of grain boundaries, the exceptional intrinsic properties of graphene are preserved by SCG. Currently, chemical vapor deposition (CVD) has been recognized as an effective method for the large-scale synthesis of graphene films. However, polycrystalline films are usually obtained and the present grain boundaries compromise the carrier mobility, thermal conductivity, optical properties, and mechanical properties. The scalable and controllable synthesis of SCG is challenging. Recently, much attention has been attracted by the engineering of large-size single-crystal substrates for the epitaxial CVD growth of large-area and high-quality SCG films. In this article, a comprehensive and comparative review is provided on the selection and preparation of various single-crystal substrates for CVD growth of SCG under different conditions. The growth mechanisms, current challenges, and future development and perspectives are discussed.
Keywords: chemical vapor deposition; epitaxial growth; grain boundaries; single-crystal graphene; single-crystal substrates.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.Acc Chem Res. 2020 Apr 21;53(4):800-811. doi: 10.1021/acs.accounts.9b00643. Epub 2020 Mar 24. Acc Chem Res. 2020. PMID: 32207601
-
Chemical vapor deposition of graphene single crystals.Acc Chem Res. 2014 Apr 15;47(4):1327-37. doi: 10.1021/ar4003043. Epub 2014 Feb 17. Acc Chem Res. 2014. PMID: 24527957
-
Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates.Adv Mater. 2024 Apr;36(17):e2308802. doi: 10.1002/adma.202308802. Epub 2023 Nov 29. Adv Mater. 2024. PMID: 37878366
-
Grain Size Engineering of CVD-Grown Large-Area Graphene Films.Small Methods. 2023 Jul;7(7):e2300156. doi: 10.1002/smtd.202300156. Epub 2023 Apr 19. Small Methods. 2023. PMID: 37075746 Review.
-
Controlled Growth of Single-Crystal Graphene Films.Adv Mater. 2020 Jan;32(1):e1903266. doi: 10.1002/adma.201903266. Epub 2019 Oct 3. Adv Mater. 2020. PMID: 31583792 Review.
Cited by
-
All-Optical Modulation Photodetectors Based on the CdS/Graphene/Ge Sandwich Structures for Integrated Sensing-Computing.Adv Sci (Weinh). 2025 Mar;12(11):e2413662. doi: 10.1002/advs.202413662. Epub 2025 Jan 22. Adv Sci (Weinh). 2025. PMID: 39840929 Free PMC article.
-
Effect of Ar on Temperature and Flow Distribution in Monocrystalline Graphene Growth: Inert Gas Is Active.ACS Omega. 2024 Dec 16;9(52):51146-51156. doi: 10.1021/acsomega.4c06728. eCollection 2024 Dec 31. ACS Omega. 2024. PMID: 39758646 Free PMC article.
-
Continuous orientated growth of scaled single-crystal 2D monolayer films.Nanoscale Adv. 2021 Oct 29;3(23):6545-6567. doi: 10.1039/d1na00545f. eCollection 2021 Nov 24. Nanoscale Adv. 2021. PMID: 36132651 Free PMC article. Review.
-
A new and versatile template towards vertically oriented nanopillars and nanotubes.Nanoscale Adv. 2023 Aug 9;5(17):4489-4498. doi: 10.1039/d3na00476g. eCollection 2023 Aug 24. Nanoscale Adv. 2023. PMID: 37638160 Free PMC article.
-
Progress and challenges of graphene and its congeners for biomedical applications.J Mol Liq. 2022 Dec 15;368(A):120703. doi: 10.1016/j.molliq.2022.120703. Epub 2022 Nov 1. J Mol Liq. 2022. PMID: 38130892 Free PMC article.
References
-
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
-
- A. A. Balandin, Nat. Mater. 2011, 10, 569.
-
- S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
-
- C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
-
- Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng, H.-L. Luo, Y.-Q. Cai, G.-D. Liu, W.-J. Zhao, Z. Zhou, L.-M. Wu, Z.-L. Zhu, M. Huang, L.-W. Liu, L. Liu, P. Cheng, K.-H. Wu, S.-B. Tian, C.-Z. Gu, Y.-G. Shi, Y.-F. Guo, Z. G. Cheng, J.-P. Hu, L. Zhao, G.-H. Yang, E. Sutter, P. Sutter, Y.-L. Wang, W. Ji, X.-J. Zhou, H.-J. Gao, Nat. Commun. 2020, 11, 2453.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources