Implicit Solvation Methods for Catalysis at Electrified Interfaces
- PMID: 34928131
- PMCID: PMC9227731
- DOI: 10.1021/acs.chemrev.1c00675
Implicit Solvation Methods for Catalysis at Electrified Interfaces
Abstract
Implicit solvation is an effective, highly coarse-grained approach in atomic-scale simulations to account for a surrounding liquid electrolyte on the level of a continuous polarizable medium. Originating in molecular chemistry with finite solutes, implicit solvation techniques are now increasingly used in the context of first-principles modeling of electrochemistry and electrocatalysis at extended (often metallic) electrodes. The prevalent ansatz to model the latter electrodes and the reactive surface chemistry at them through slabs in periodic boundary condition supercells brings its specific challenges. Foremost this concerns the difficulty of describing the entire double layer forming at the electrified solid-liquid interface (SLI) within supercell sizes tractable by commonly employed density functional theory (DFT). We review liquid solvation methodology from this specific application angle, highlighting in particular its use in the widespread ab initio thermodynamics approach to surface catalysis. Notably, implicit solvation can be employed to mimic a polarization of the electrode's electronic density under the applied potential and the concomitant capacitive charging of the entire double layer beyond the limitations of the employed DFT supercell. Most critical for continuing advances of this effective methodology for the SLI context is the lack of pertinent (experimental or high-level theoretical) reference data needed for parametrization.
Conflict of interest statement
The authors declare no competing financial interest.
Figures












Similar articles
-
Ab initiomodelling of interfacial electrochemical properties: beyond implicit solvation limitations.J Phys Condens Matter. 2021 Jun 10;33(30). doi: 10.1088/1361-648X/ac0207. J Phys Condens Matter. 2021. PMID: 34108293
-
An Electrostatically Embedded QM/MM Scheme for Electrified Interfaces.ACS Appl Mater Interfaces. 2023 May 24;15(20):25009-25017. doi: 10.1021/acsami.3c01430. Epub 2023 May 10. ACS Appl Mater Interfaces. 2023. PMID: 37163568
-
The electrochemical interface in first-principles calculations.Surf Sci Rep. 2020 May;75(2):10.1016/j.surfrep.2020.100492. doi: 10.1016/j.surfrep.2020.100492. Surf Sci Rep. 2020. PMID: 34194128 Free PMC article.
-
Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly.Front Mol Biosci. 2018 Feb 12;5:13. doi: 10.3389/fmolb.2018.00013. eCollection 2018. Front Mol Biosci. 2018. PMID: 29484300 Free PMC article. Review.
-
Accounting for electronic polarization in non-polarizable force fields.Phys Chem Chem Phys. 2011 Feb 21;13(7):2613-26. doi: 10.1039/c0cp01971b. Epub 2011 Jan 7. Phys Chem Chem Phys. 2011. PMID: 21212894 Review.
Cited by
-
Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes.Nat Commun. 2024 Nov 21;15(1):10099. doi: 10.1038/s41467-024-54455-z. Nat Commun. 2024. PMID: 39572580 Free PMC article.
-
The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts.Nat Commun. 2023 May 5;14(1):2598. doi: 10.1038/s41467-023-37929-4. Nat Commun. 2023. PMID: 37147278 Free PMC article.
-
Dynamics and kinetics exploration of the oxygen reduction reaction at the Fe-N4/C-water interface accelerated by a machine learning force field.Chem Sci. 2025 Jan 20;16(8):3620-3629. doi: 10.1039/d4sc06422d. eCollection 2025 Feb 19. Chem Sci. 2025. PMID: 39877822 Free PMC article.
-
Bias Dependence of the Transition State of the Hydrogen Evolution Reaction.J Am Chem Soc. 2025 Feb 12;147(6):5472-5485. doi: 10.1021/jacs.4c18638. Epub 2025 Feb 3. J Am Chem Soc. 2025. PMID: 39900519 Free PMC article.
-
The concerted proton-electron transfer mechanism of proton migration in the electrochemical interface.iScience. 2023 Oct 29;26(11):108318. doi: 10.1016/j.isci.2023.108318. eCollection 2023 Nov 17. iScience. 2023. PMID: 38026153 Free PMC article.
References
-
- Gür T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. 10.1039/C8EE01419A. - DOI
-
- He Q.; Yu B.; Li Z.; Zhao Y. Density functional theory for battery materials. Energy Environ. Mater. 2019, 2, 264–279. 10.1002/eem2.12056. - DOI
Publication types
LinkOut - more resources
Full Text Sources