Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar:609:434-446.
doi: 10.1016/j.jcis.2021.11.193. Epub 2021 Dec 3.

Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance

Affiliations

Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance

Yedluri Anil Kumar et al. J Colloid Interface Sci. 2022 Mar.

Abstract

In this research literature, a tungsten disulfide/iron cobaltite (WS2/FeCo2O4) interwoven construction array was prepared by a simplistic hydrothermal approach on Ni foam as an integrative electrode for supercapacitors (SCs). For characterization of the wearing of WS2 nanostructure on FeCo2O4 nanosheets (WS2/FeCo2O4) by the Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The WS2/FeCo2O4 nanosheets supply a larger surface region and sufficient space to allow for volume changes. Moreover, considerable features of wellbeing conductivity from the Ni foam conductor and the synergistic procedures between WS2 and FeCo2O4, the integrated WS2/FeCo2O4 composite achieved prominent SCs storage performances with a higher specific capacity of 1122C g-1 (2492.9F g-1) at 1 A g-1 and notable capacity retention of 98.1% at 3 A g-1 after 5000 long cycles and retained higher rate capacity of 951.9 C g-1 at 15 A g-1. For practical application, an asymmetric supercapacitors type WS2/FeCo2O4//active carbon (WS2/FeCo2O4//AC) device was successfully prepared. The WS2/FeCo2O4//AC device displays a higher specific capacity of 110C g-1 and energy density of 85.68 W h kg-1 at power density at 897.65 W kg-1, as well as the superior initial capacitance of 98.7% with cyclic stabilities after 4000 long cycles. Thus, these results indicated the great potential of the constructed WS2/FeCo2O4//AC in the scenario electrochemical properties due to their outstanding energy storage activities.

Keywords: Asymmetric supercapacitors; Better capacity; Favored electrode material-type; High energy storage; Hydrothermal procedure; Tungsten disulfide/iron cobaltite interwoven construction.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources