Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Dec 20;7(1):75.
doi: 10.1186/s40942-021-00350-4.

Update on surgical management of complex macular holes: a review

Affiliations
Review

Update on surgical management of complex macular holes: a review

Mohd-Asyraaf Abdul-Kadir et al. Int J Retina Vitreous. .

Abstract

Modern surgical interventions effectively treat macular holes (MHs) more than 90%. Current surgical treatment for MHs is pars plana vitrectomy with epiretinal membrane, internal limiting membrane (ILM) peeling, gas endotamponade, and prone posturing postoperatively. However, a small subset of MHs imposes challenges to surgeons and frustrations on patients. A narrative review was performed on the surgical treatment of challenging MHs including large and extra-large MHs, myopic MHs with or without retinal detachment, and chronic and refractory MHs. There are robust data supporting inverted ILM flap as the first-line treatment for large idiopathic MHs and certain secondary MHs including myopic MHs. In addition, several studies had shown that ILM flap manipulations in combination with surgical adjuncts increase surgical success, especially in difficult MHs. Even in eyes with limited ILM, surgical options included autologous retinal graft, human amniotic membrane, and creation of a distal ILM flap that can assist in MH closure even though the functional outcome may be affected by the MH chronicity. Despite relative success anatomically and visually after each technique, most techniques require a long-term study to analyze their safety profile and to establish any morphological changes of the MH plug in the closed MHs.

Keywords: Internal limiting membrane peeling; Macular hole; Vitrectomy; Vitreoretinal disease.

PubMed Disclaimer

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Fig. 1
Fig. 1
a i-ILM Flap by Michalewska et al. Following core vitrectomy, ILM was stained with TB and ERM was removed if present. Approximately 2 DD of ILM was peeled circumferentially and left attached to the edges of the MH. The peripheral ILM was trimmed and the central remnant of ILM was massaged until inverted over the MH. Subsequently, air–fluid exchange was performed with intraocular gas tamponade. Patients were advised to stay in a position that allowed them to see the air bubble in their central vision for 3–4 days. b Left—Shin et al. stained the ILM using brilliant blue-G (BBG) and removed the surrounding ILM but a 1 DD-sized flap superiorly to MH. PFC was injected over the flap for stabilization and repositioning if needed. Right—Michalewska et al. performed temporal i-ILM flap and about 2 DD of ILM was peeled temporally to the MH edge. The flap was then inverted over the MH until adequate coverage was obtained
Fig. 2
Fig. 2
a Tabandeh et al. performed a distal superior ILM flap from the MH and transposed it over the MH. b Formation of pedicle ILM by Hu et al. PFCL was injected to protect the MH and the exposed RPE before staining the ILM with ICG or BBG. Then the ILM peeling was performed circumferentially around the MH for at least 2 DD and left attached to the superior temporal retina. The pedicle ILM then rotated and transposed over the MH, with its nasal part fully covered the MH while stabilised and flattened under a larger bubble of PFCL followed by air-fluid-PFCL exchange. The authors chose either SO or autologous whole blood with C3F8 gas to prevent displacement of the ILM pedicle transposition and patients were advised to prone-posturing for 3 days
Fig. 3
Fig. 3
ILM retracting door. The ILM was stained using indocyanine green (ICG) and a large flap was created starting nasally to temporally, including over the fovea and the MH area. The flap which now hinged temporally then freely draped over the MH and thus the nasal ILM flap covered the MH

References

    1. Knapp H. Ueber Isolierte Zerreissungen der Aderhaut infolge von Traumen auf dem Augapfel. Arch Augenheilkd. 1869;1:6–29.
    1. Zhang L, Li X, Yang X, Shen Y, Wu M. Internal limiting membrane insertion technique combined with nerve growth factor injection for large macular hole. BMC Ophthalmol. 2019;19(1):247. - PMC - PubMed
    1. McCannel CA, Ensminger JL, Diehl NN, Hodge DN. Population-based incidence of macular holes. Ophthalmology. 2009;116(7):1366–1369. - PMC - PubMed
    1. Ezra E. Idiopathic full thickness macular hole: natural history and pathogenesis. Br J Ophthalmol. 2001;85(1):102. - PMC - PubMed
    1. Spiteri Cornish K, Lois N, Scott N, Burr J, Cook J, Boachie C, et al. Vitrectomy with internal limiting membrane (ILM) peeling versus vitrectomy with no peeling for idiopathic full-thickness macular hole (FTMH) Cochrane Database Syst Rev. 2013;6:cd009306. - PubMed

LinkOut - more resources