Emerging dynamic memristors for neuromorphic reservoir computing
- PMID: 34932057
- DOI: 10.1039/d1nr06680c
Emerging dynamic memristors for neuromorphic reservoir computing
Abstract
Reservoir computing (RC), as a brain-inspired neuromorphic computing algorithm, is capable of fast and energy-efficient temporal data analysis and prediction. Hardware implementation of RC systems can significantly reduce the computing time and energy, but it is hindered by current physical devices. Recently, dynamic memristors have proved to be promising for hardware implementation of such systems, benefiting from their fast and low-energy switching, nonlinear dynamics, and short-term memory behavior. In this work, we review striking results that leverage dynamic memristors to enhance the data processing abilities of RC systems based on resistive switching devices and magnetoresistive devices. The critical characteristic parameters of memristors affecting the performance of RC systems, such as reservoir size and decay time, are identified and discussed. Finally, we summarize the challenges this field faces in reliable and accurate task processing, and forecast the future directions of RC systems.
Similar articles
-
3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing.Nanoscale. 2022 Dec 1;14(46):17170-17181. doi: 10.1039/d2nr05012a. Nanoscale. 2022. PMID: 36380717
-
Brain-Inspired Reservoir Computing Using Memristors with Tunable Dynamics and Short-Term Plasticity.ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6176-6188. doi: 10.1021/acsami.3c16003. Epub 2024 Jan 25. ACS Appl Mater Interfaces. 2024. PMID: 38271202
-
Leveraging volatile memristors in neuromorphic computing: from materials to system implementation.Mater Horiz. 2024 Oct 14;11(20):4840-4866. doi: 10.1039/d4mh00675e. Mater Horiz. 2024. PMID: 39189179 Review.
-
LiNbO3 dynamic memristors for reservoir computing.Front Neurosci. 2023 Apr 11;17:1177118. doi: 10.3389/fnins.2023.1177118. eCollection 2023. Front Neurosci. 2023. PMID: 37113143 Free PMC article.
-
Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions.ACS Nano. 2024 Aug 20;18(33):21685-21713. doi: 10.1021/acsnano.4c03264. Epub 2024 Aug 7. ACS Nano. 2024. PMID: 39110686 Free PMC article. Review.
Cited by
-
Nanoelectronics-enabled reservoir computing hardware for real-time robotic controls.Sci Adv. 2025 Mar 28;11(13):eadu2663. doi: 10.1126/sciadv.adu2663. Epub 2025 Mar 26. Sci Adv. 2025. PMID: 40138421 Free PMC article.
-
Cellular Automata Inspired Multistable Origami Metamaterials for Mechanical Learning.Adv Sci (Weinh). 2023 Dec;10(34):e2305146. doi: 10.1002/advs.202305146. Epub 2023 Oct 23. Adv Sci (Weinh). 2023. PMID: 37870201 Free PMC article.
-
Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges.Nanomicro Lett. 2024 Nov 13;17(1):61. doi: 10.1007/s40820-024-01550-x. Nanomicro Lett. 2024. PMID: 39537845 Free PMC article. Review.
-
Short-term synaptic plasticity in emerging devices for neuromorphic computing.iScience. 2023 Mar 2;26(4):106315. doi: 10.1016/j.isci.2023.106315. eCollection 2023 Apr 21. iScience. 2023. PMID: 36950108 Free PMC article. Review.
-
Tunable Neuromorphic Switching Dynamics via Porosity Control in Mesoporous Silica Diffusive Memristors.ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16641-16652. doi: 10.1021/acsami.3c19020. Epub 2024 Mar 17. ACS Appl Mater Interfaces. 2024. PMID: 38494599 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources