Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 17;51(3):998-1007.
doi: 10.1039/d1dt03978d.

A PH-functionalized dicationic bis(imidazolio)diphosphine

Affiliations

A PH-functionalized dicationic bis(imidazolio)diphosphine

Mario Cicač-Hudi et al. Dalton Trans. .

Abstract

Reaction of the iodide salt of a secondary imidazolio-iodophosphine [(L)PHI]I (L+ = 1,3-diarylimidazolium-yl) with an imidazolio-phosphide (L)PH in the presence of GaI3 afforded the isolable salt of a dicationic, bis(imidazolio)-substituted dihydro-diphosphine [(L)2P2H2][GaI4]2. Non-preparative formation of the cationic diphosphines was also observed upon spontaneous "dehalo-coupling" of [(L)PHI]+, or in reactions of [(L)PHI]I and (L)PH in the absence of GaI3. Further reaction of [(L)2P2H2]2+ with (L)PH produced an iodide salt of a known (bis)imidazolio-diphosphide monocation [(L)2P2H]+. The identity of cationic diphosphines and diphosphides was established by single-crystal X-ray diffraction studies. NMR spectroscopy revealed that dications [(L)2P2H2]2+ exist as a mixture of meso- and rac-diastereomers in solution. Computational studies confirmed the stereochemical assignment of the isomers observed, and gave insight into the bonding situation of the diphosphine dications.

PubMed Disclaimer