Effects of Exercise Training on Anabolic and Catabolic Hormones with Advanced Age: A Systematic Review
- PMID: 34936049
- PMCID: PMC9124654
- DOI: 10.1007/s40279-021-01612-9
Effects of Exercise Training on Anabolic and Catabolic Hormones with Advanced Age: A Systematic Review
Abstract
Background: Ageing is accompanied by decreases in physical capacity and physiological regulatory mechanisms including altered hormonal regulation compared with age-matched sedentary people. The potential benefits of exercise in restoring such altered hormone production and secretion compared to age-matched physically inactive individuals who are ageing remains unclear.
Objectives: The aim of this systematic review was to summarise the findings of exercise training in modulating levels of ostensibly anabolic and catabolic hormones in adults aged > 40 years.
Methods: We searched the following electronic databases (to July 2021) without a period limit: Cochrane Library, PubMed, Science Direct, Scopus, SPORTDiscus and Web of Science. Additionally, a manual search for published studies in Google Scholar was conducted for analysis of the 'grey literature' (information produced outside of traditional commercial or academic publishing and distribution channels). The initial search used the terms 'ageing' OR 'advanced age' OR 'old people' OR 'older' OR elderly' AND 'anabolic hormones' OR 'catabolic hormones' OR 'steroid hormones' OR 'sex hormones' OR 'testosterone' OR 'cortisol' OR 'insulin' OR 'insulin-like growth factor-1' OR 'IGF-1' OR 'sex hormone-binding globulin' OR 'SHBG' OR 'growth hormone' OR 'hGH' OR 'dehydroepiandrosterone' OR 'DHEA' OR 'dehydroepiandrosterone sulfate (DHEA-S)' AND 'exercise training' OR 'endurance training' OR 'resistance training' OR ' strength training' OR 'weight-lifting' OR 'high-intensity interval training' OR 'high-intensity interval exercise' OR 'high-intensity intermittent training' OR 'high-intensity intermittent exercise' OR 'interval aerobic training' OR 'interval aerobic exercise' OR 'intermittent aerobic training' OR 'intermittent aerobic exercise' OR 'high-intensity training' OR 'high-intensity exercise' OR 'sprint interval training' OR 'sprint interval exercise' OR 'combined exercise training' OR 'anaerobic training'. Only eligible full texts in English or French were considered for analysis.
Results: Our search identified 484 records, which led to 33 studies for inclusion in the analysis. Different exercise training programs were used with nine studies using endurance training programs, ten studies examining the effects of high-intensity interval training, and 14 studies investigating the effects of resistance training. Most training programs lasted ≥ 2 weeks. Studies, regardless of the design, duration or intensity of exercise training, reported increases in testosterone, sex hormone-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1), human growth hormone (hGH) or dehydroepiandrosterone (DHEA) (effect size: 0.19 < d < 3.37, small to very large) in both older males and females. However, there was no consensus on the effects of exercise on changes in cortisol and insulin in older adults.
Conclusion: In conclusion, findings from this systematic review suggest that exercise training increases basal levels of testosterone, IGF-1, SHBG, hGH and DHEA in both male and females over 40 years of age. The increases in blood levels of these hormones were independent of the mode, duration and intensity of the training programs. However, the effects of long-term exercise training on cortisol and insulin levels in elderly people are less clear.
© 2021. Crown.
Conflict of interest statement
Hassane Zouhal, Ayyappan Jayavel, Kamalanathan Parasuraman, Lawrence D Hayes, Claire Tourny, Fatma Rhibi, Ismail Laher, Abderraouf Ben Abderrahman and Anthony C. Hackney declare that they have no conflicts of interest relevant to the content of this review.
Figures


References
-
- Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol Bethesda Md 1985. 1991;71(2):644–650. - PubMed
-
- Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2 max. J Appl Physiol Bethesda Md 1985. 1988;65(3):1147–1151. - PubMed
-
- Conley KE, Cress ME, Jubrias SA, Esselman PC, Odderson IR. From muscle properties to human performance, using magnetic resonance. J Gerontol A Biol Sci Med Sci. 1995;50:35–40. - PubMed
-
- Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol Bethesda Md 1985. 2006;101(3):906–917. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous