Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 6:8:745203.
doi: 10.3389/fnut.2021.745203. eCollection 2021.

Impact of Maternal Intake of Artificial Sweetener, Acesulfame-K, on Metabolic and Reproductive Health Outcomes in Male and Female Mouse Offspring

Affiliations

Impact of Maternal Intake of Artificial Sweetener, Acesulfame-K, on Metabolic and Reproductive Health Outcomes in Male and Female Mouse Offspring

Pania E Bridge-Comer et al. Front Nutr. .

Abstract

Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in the consumption of "diet" options sweetened by artificial sweeteners (AS). Yet, there is limited information regarding the impact of AS intake during pregnancy on the long-term risk of cardiometabolic and reproductive complications in adult offspring. This study examined the influence of maternal acesulfame-K (Ace-K) and fructose consumption on metabolic and reproductive outcomes in offspring. Pregnant C57BL/6 mice received standard chow ad-libitum with either water (CD), fructose (Fr; 20% kcal intake), or AS (AS; 12.5 mM Ace-K) throughout pregnancy and lactation (n = 8/group). Postweaning offspring were maintained on a CD diet for the remainder of the experiment. Body weight, food intake, and water intake were measured weekly. Oral glucose tolerance tests (OGTT) were undertaken at 12 weeks, and the offspring were culled at week 14. Female, but not male, AS groups exhibited decreased glucose tolerance compared to Fr. There was an increase in gonadal fat adipocyte size in male offspring from AS and Fr groups compared to CD groups. In female offspring, adipocyte size was increased in the Fr group compared to the CD group. In female, but not male offspring, there was a trend toward increase in Fasn gene expression in AS group compared to the CD group. Maternal AS and Fr also negatively impacted upon female offspring estrus cycles and induced alterations to markers associated with ovulation. In summary, exposure to Ace-k via the maternal diet leads to impaired glucose tolerance and impacts adipocyte size in a sex-specific manner as well as significantly affecting estrus cycles and related gene markers in female offspring. This has implications in terms of providing tailored dietary advice for pregnant women and highlights the potential negative influence of artificial sweetener intake in the context of intergenerational impacts.

Keywords: adipose tissue; artificial sweetener; maternal nutrition; metabolic health; reproductive.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
The impact of maternal Ace-K (AS) and fructose (Fr) intake compared to Controls (CD) on glucose homeostasis at 12 weeks of age in female and male C57BL/6 offspring. OGTT (2 g/kg) in female (A) and male (E) offspring. Area under the OGTT curves in female (B) and male (F) offspring. Plasma insulin secretion curve at 0, 15, and 60 min post-OGTT in female (C) and male (G) offspring. Area under the curve in insulin in female (D) and male (H) offspring. OGTT data were analyzed using repeated measures ANOVA, AUC by ANOVA. Data are expressed as mean ± SEM. +P < 0.05 w.r.t AS. ∧P < 0.05 w.r.t Fr; n = 8 per sex per group.
Figure 2
Figure 2
The impact of maternal Ace-K (AS) and fructose (Fr) intake compared to Controls (CD) on adipocyte size in gonadal adipose tissue in female and male C57BL/6 offspring. Representative gonadal adipose tissue sections (hematoxylin and eosin staining) in female (A) and male (D) offspring. Adipocyte size distribution in female (B) and male (E) offspring. Adipocyte average size in female (C) and male (F) offspring. Data were analyzed by one-way ANOVA. Data are expressed as mean ± SEM. *P < 0.05 AS w.r.t CD. #P < 0.05 Fr w.r.t CD; n = 8 per sex per group.
Figure 3
Figure 3
The impact of maternal Ace-K (AS) and fructose (Fr) intake compared to Controls (CD) on adipocyte size in subcutaneous adipose tissue in female and male C57BL/6 offspring. Representative subcutaneous adipose tissue sections (hematoxylin and eosin staining) in female (A) and male (D) offspring. Adipocyte size distribution in female (B) and male (E) offspring. Adipocyte average size in female (C) and male (F) offspring. Data were analyzed by one-way ANOVA. Data are expressed as mean ± SEM. *P < 0.05 AS w.r.t CD. #P < 0.05 Fr w.r.t CD; n = 8 per sex per group.
Figure 4
Figure 4
The impact of maternal Ace-K (AS) and fructose (Fr) intake compared to Controls (CD) on Fasn gonadal tissue gene expression in female and male C57BL/6 offspring. Data were analyzed using one-way ANOVA. Data are expressed as mean ± SEM. n = 8 per sex per group.
Figure 5
Figure 5
Proportion of female offspring with regular, irregular, or persistent estrus cycles as a percentage of total female offspring within each group. Data were analyzed using nominal logistic regression. n = 8 per group.
Figure 6
Figure 6
The impact of maternal Ace-K (AS) and fructose (Fr) intake compared to Controls (CD) on ovarian gene expression in female C57BL/6 offspring. (A) Pgr, (B) Cyp17a1. Data were analyzed using one-way ANOVA. Data are expressed as mean ± SEM. +P < 0.05 w.r.t AS; n = 8 per group.

References

    1. Sylvetsky AC, Jin Y, Clark EJ, Welsh Ja, Rother KI, Talegawkar SA, et al. . Consumption of low-calorie sweeteners among children and adults in the United States. J Acad Nutr Diet. (2017) 117:441–448.e2. 10.1016/j.jand.2016.11.004 - DOI - PMC - PubMed
    1. Farhat G, Dewison F, Stevenson L. Knowledge and perceptions of non-nutritive sweeteners within the UK adult population. Nutrients. (2021) 13:444. 10.3390/nu13020444 - DOI - PMC - PubMed
    1. Mathur K, Agrawal RK, Nagpure S, Deshpande D. Effect of artificial sweeteners on insulin resistance among type-2 diabetes mellitus patients. J Family Med Prim Care. (2020) 9:69–71. 10.4103/jfmpc.jfmpc_329_19 - DOI - PMC - PubMed
    1. Pearlman M, Obert J, Casey L. The association between artificial sweeteners and obesity. Curr Gastroenterol Rep. (2017) 19:64. 10.1007/s11894-017-0602-9 - DOI - PubMed
    1. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PloS ONE. (2017) 12:e0178426. 10.1371/journal.pone.0178426 - DOI - PMC - PubMed