Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review
- PMID: 34940368
- PMCID: PMC8698751
- DOI: 10.3390/bioengineering8120215
Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review
Abstract
Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.
Keywords: biomedical devices; blood platelets; blood-material interaction; coagulation; complement system; hemocompatibility; surface modification.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Ahmed A., Wang X., Yang M. Biocompatible materials of pulsatile and rotary blood pumps: A brief review. Rev. Adv. Mater. Sci. 2020;59:322–339. doi: 10.1515/rams-2020-0009. - DOI
-
- Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. - DOI
-
- Ufukerbulut D., Lazoglu I. Biomaterials for Artificial Organs. Elsevier; Amsterdam, The Netherlands: 2011. Biomaterials for Improving the Blood and Tissue Compatibility of Total Artificial Hearts (TAH) and Ventricular Assist Devices (VAD) pp. 207–235.
-
- Fischer M., Maitz M., Werner C. Hemocompatibility of Biomaterials for Clinical Applications. Elsevier; Amsterdam, The Netherlands: 2018. Coatings for Biomaterials to Improve Hemocompatibility; pp. 163–190.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
