Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 13;126(1):68-79.
doi: 10.1021/acs.jpca.1c09552. Epub 2021 Dec 23.

Singlet O2 Reactions with Radical Cations of 8-Bromoguanine and 8-Bromoguanosine: Guided-Ion Beam Mass Spectrometric Measurements and Theoretical Treatments

Affiliations

Singlet O2 Reactions with Radical Cations of 8-Bromoguanine and 8-Bromoguanosine: Guided-Ion Beam Mass Spectrometric Measurements and Theoretical Treatments

Jonathan Benny et al. J Phys Chem A. .

Abstract

8-Bromoguanosine is generated in vivo as a biomarker for early inflammation. Its formation and secondary reactions lead to a variety of biological sequelae at inflammation sites, most of which are mutagenic and linked to cancer. Herein, we report the formation of radical cations of 8-bromoguanine (8BrG•+) and 8-bromoguanosine (8BrGuo•+) and their reactions toward the lowest excited singlet molecular oxygen (1O2)─a common reactive oxygen species generated in biological systems. This work aims to investigate synergistic, oxidatively generated damage of 8-brominated guanine and guanosine that may occur upon ionizing radiation, one-electron oxidation, and 1O2 oxidation. Capitalizing on measurements of reaction product ions and cross sections of 8BrG•+ and 8BrGuo•+ with 1O2 using guided-ion beam tandem mass spectrometry and augmented by computational modeling of the prototype reaction system, 8BrG•+ + 1O2, using the approximately spin-projected ωB97XD/6-31+G(d,p) density functional theory, the coupled cluster DLPNO-CCSD(T)/aug-cc-pVTZ and the multireference CASPT2(21,15)/6-31G**, probable reaction products, and potential energy surfaces (PESs) were mapped out. 8BrG•+ and 8BrGuo•+ present similar exothermic oxidation products, and their reaction efficiencies with 1O2 increase with decreasing collision energy. Both single- and multireference theories predicted that the two most energetically favorable reaction pathways correspond to 1O2-addition to the C8 and C5-positions of 8BrG•+, respectively. The CASPT2-calculated PES represents the best quantitative agreement with the experimental benchmark, in that the oxidation exothermicity is close to the water hydration energy of product ions and, thus, is able to eliminate a water ligand in the product ions.

PubMed Disclaimer