Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987;326(6111):403-5.
doi: 10.1038/326403a0.

Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment

Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment

M Y Gordon et al. Nature. 1987.

Abstract

Haematopoietic progenitor cells proliferate and mature in semisolid media when stimulated by exogenous haematopoietic cell growth factors (HCGFs) such as granulocyte-macrophage colony-stimulating factor (GM-CSF). They also proliferate in association with marrow-derived stromal cells although biologically active amounts of HCGFs cannot be detected in stromal culture supernatants. It is possible that HCGFs are synthesized in small amounts by stromal cells but remain bound to the stromal cells and/or their extracellular matrix (ECM). This interpretation accords with haematopoietic progenitor cell proliferation in close association with stromal layers in long-term cultures. Glycosaminoglycans (GAGs) are found in the ECM produced by stromal cells. They are prime candidates for selectively retaining HCGFs in the stromal layer; they influence embryonic morphogenesis and cyto-differentiation and they may regulate haematopoiesis. We now report that granulocyte-macrophage colony-stimulating activity can be eluted from cultured stromal layers and that exogenous GM-CSF binds to GAGs from bone marrow stromal ECM. Selective compartmentalization of HCGFs in this manner may be an important function of the marrow microenvironment and may be involved in haematopoietic cell regulation.

PubMed Disclaimer

Publication types

LinkOut - more resources