Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 20;10(12):2022.
doi: 10.3390/antiox10122022.

Mild Coronavirus Disease 2019 (COVID-19) Is Marked by Systemic Oxidative Stress: A Pilot Study

Affiliations

Mild Coronavirus Disease 2019 (COVID-19) Is Marked by Systemic Oxidative Stress: A Pilot Study

Larissa E van Eijk et al. Antioxidants (Basel). .

Abstract

Oxidative stress has been implicated to play a critical role in the pathophysiology of coronavirus disease 2019 (COVID-19) and may therefore be considered as a relevant therapeutic target. Serum free thiols (R-SH, sulfhydryl groups) comprise a robust marker of systemic oxidative stress, since they are readily oxidized by reactive oxygen species (ROS). In this study, serum free thiol concentrations were measured in hospitalized and non-hospitalized patients with COVID-19 and healthy controls and their associations with relevant clinical parameters were examined. Serum free thiol concentrations were measured colorimetrically (Ellman's method) in 29 non-hospitalized COVID-19 subjects and 30 age-, sex-, and body-mass index (BMI)-matched healthy controls and analyzed for associations with clinical and biochemical disease parameters. Additional free thiol measurements were performed on seven serum samples from COVID-19 subjects who required hospitalization to examine their correlation with disease severity. Non-hospitalized subjects with COVID-19 had significantly lower concentrations of serum free thiols compared to healthy controls (p = 0.014), indicating oxidative stress. Serum free thiols were positively associated with albumin (St. β = 0.710, p < 0.001) and inversely associated with CRP (St. β = -0.434, p = 0.027), and showed significant discriminative ability to differentiate subjects with COVID-19 from healthy controls (AUC = 0.69, p = 0.011), which was slightly higher than the discriminative performance of CRP concentrations regarding COVID-19 diagnosis (AUC = 0.66, p = 0.042). This study concludes that systemic oxidative stress is increased in patients with COVID-19 compared with healthy controls. This opens an avenue of treatment options since free thiols are amenable to therapeutic modulation.

Keywords: COVID-19; free thiols; oxidative stress; redox.

PubMed Disclaimer

Conflict of interest statement

All authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
(A) Kernel density estimation of the distributions of serum free thiol concentrations among subjects with mild COVID-19 and healthy controls, demonstrating a normal distribution in both groups. Density estimates were performed using a Gaussian kernel. (B) Baseline serum concentrations of free thiols (µM) are significantly reduced in subjects with mild COVID-19 as compared to healthy controls (* p = 0.014).
Figure 2
Figure 2
(A) Serum CRP concentrations are inversely associated with serum free thiol concentrations (R-SH) (St. β = −0.434, p = 0.027) in mild COVID-19 subjects. (B) Serum albumin is positively associated with serum free thiol concentrations (R-SH) (μM) (St. β = 0.710, p < 0.001) in mild COVID-19 subjects.
Figure 3
Figure 3
(A) Serum concentrations of free thiols (µM) significantly discriminated between patients with COVID-19 and healthy controls and (B) showing a slightly higher discriminative capacity as compared to CRP concentrations (mg/L).

References

    1. van Eijk L.E., Binkhorst M., Bourgonje A.R., Offringa A.K., Mulder D.J., Bos E.M., Kolundzic N., Abdulle A.E., van der Voort P.H., Rikkert M.G.O., et al. COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol. 2021;254:307–331. doi: 10.1002/path.5642. - DOI - PMC - PubMed
    1. Bourgonje A.R., Abdulle A.E., Timens W., Hillebrands J.L., Navis G.J., Gordijn S.J., Bolling M.C., Dijkstra G., Voors A.A., Osterhaus A.D., et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19) J. Pathol. 2020;251:228–248. doi: 10.1002/path.5471. - DOI - PMC - PubMed
    1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324:782–793. doi: 10.1001/jama.2020.12839. - DOI - PubMed
    1. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. - DOI - PubMed
    1. Cumpstey A.F., Clark A.D., Santolini J., Jackson A.A., Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid. Redox Signal. 2021;35:1226–1268. doi: 10.1089/ars.2021.0017. - DOI - PubMed