Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 29;10(12):3349.
doi: 10.3390/cells10123349.

Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia

Affiliations
Review

Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia

Huan Xu et al. Cells. .

Abstract

Acute lymphoblastic leukemia is the most common malignancy in children and is characterized by numerous genetic and epigenetic abnormalities. Epigenetic mechanisms, including DNA methylations and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. Emerging studies are increasing our understanding of the epigenetic role of leukemogenesis and have demonstrated the potential of DNA methylations and histone modifications as a biomarker for lineage and subtypes classification, predicting relapse, and disease progression in acute lymphoblastic leukemia. Epigenetic abnormalities are relatively reversible when treated with some small molecule-based agents compared to genetic alterations. In this review, we conclude the genetic and epigenetic characteristics in ALL and discuss the future role of DNA methylation and histone modifications in predicting relapse, finally focus on the individual and precision therapy targeting epigenetic alterations.

Keywords: epigenetics; genomics; pediatric acute lymphoblastic leukemia; targeted therapy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Liu Y.-F., Wang B.-Y., Zhang W.-N., Huang J.-Y., Li B.-S., Zhang M., Jiang L., Li J.-F., Wang M.-J., Dai Y.-J., et al. Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine. 2016;8:173–183. doi: 10.1016/j.ebiom.2016.04.038. - DOI - PMC - PubMed
    1. Wei M.C., Cleary M.L. Novel methods and approaches to acute lymphoblastic leukemia drug discovery. Expert Opin. Drug Discov. 2014;9:1435–1446. doi: 10.1517/17460441.2014.956720. - DOI - PubMed
    1. Jeha S., Pei D., Choi J., Cheng C., Sandlund J.T., Coustan-Smith E., Campana D., Inaba H., Rubnitz J.E., Ribeiro R.C., et al. Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. J. Clin. Oncol. 2019;37:3377–3391. doi: 10.1200/JCO.19.01692. - DOI - PMC - PubMed
    1. Teachey D.T., Pui C.-H. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20:e142–e154. doi: 10.1016/S1470-2045(19)30031-2. - DOI - PMC - PubMed
    1. Pui C.-H., Nichols K.E., Yang J.J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol. 2019;16:227–240. doi: 10.1038/s41571-018-0136-6. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources