Non-Isothermal Free-Surface Viscous Flow of Polymer Melts in Pipe Extrusion Using an Open-Source Interface Tracking Finite Volume Method
- PMID: 34961005
- PMCID: PMC8706656
- DOI: 10.3390/polym13244454
Non-Isothermal Free-Surface Viscous Flow of Polymer Melts in Pipe Extrusion Using an Open-Source Interface Tracking Finite Volume Method
Abstract
Polymer extrudate swelling is a rheological phenomenon that occurs after polymer melt flow emerges at the die exit of extrusion equipment due to molecular stress relaxations and flow redistributions. Specifically, with the growing demand for large scale and high productivity, polymer pipes have recently been produced by extrusion. This study reports the development of a new incompressible non-isothermal finite volume method, based on the Arbitrary Lagrangian-Eulerian (ALE) formulation, to compute the viscous flow of polymer melts obeying the Herschel-Bulkley constitutive equation. The Papanastasiou-regularized version of the constitutive equation is employed. The influence of the temperature on the rheological behavior of the material is controlled by the Williams-Landel-Ferry (WLF) function. The new method is validated by comparing the extrudate swell ratio obtained for Bingham and Herschel-Bulkley flows (shear-thinning and shear-thickening) with reference data found in the scientific literature. Additionally, the essential flow characteristics including yield-stress, inertia and non-isothermal effects were investigated.
Keywords: Herschel–Bulkley fluids; OpenFOAM; extrudate swell; finite volume method; free-surfaces; interface tracking; pipe die; polymer melt; yield stress.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Mirjalili S., Jain S.S., Dodd M. Interface-Capturing Methods for Two-Phase Flows: An Overview and Recent Developments. Center for Turbulence Research Annual Research Briefs, Stanford University; Stanford, CA, USA: 2017. pp. 117–135.
-
- Nie Y., Hao J., Lin Y.-J., Sun W. 3D simulation and parametric analysis of polymer melt flowing through spiral mandrel die for pipe extrusion. Adv. Polym. Technol. 2018;37:3882–3895. doi: 10.1002/adv.22171. - DOI
-
- Fernandes C., Pontes A.J., Viana J.C., Nóbrega J.M., Gaspar-Cunha A. Modeling of Plasticating Injection Molding—Experimental Assessment. Int. Polym. Process. 2014;5:558–569. doi: 10.3139/217.2862. - DOI
-
- Pedro J., Ramôa B., Nóbrega J.M., Fernandes C. Verification and Validation of openInjMoldSim, an Open-Source Solver to Model the Filling Stage of Thermoplastic Injection Molding. Fluids. 2020;5:84. doi: 10.3390/fluids5020084. - DOI
-
- Tadmor Z., Klein I. Computer Programs for Plastic Engineers. Rein-hold Book Corporation; New York, NY, USA: 1968.
Grants and funding
LinkOut - more resources
Full Text Sources
