Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;49(2):1000-1014.
doi: 10.1002/mp.15427. Epub 2022 Jan 10.

High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN)

Affiliations

High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN)

Ziyu Li et al. Med Phys. 2022 Feb.

Abstract

Purpose: The goal of this study is to leverage an advanced fast imaging technique, wave-controlled aliasing in parallel imaging (Wave-CAIPI), and a generative adversarial network (GAN) for denoising to achieve accelerated high-quality high-signal-to-noise-ratio (SNR) volumetric magnetic resonance imaging (MRI).

Methods: Three-dimensional (3D) T2 -weighted fluid-attenuated inversion recovery (FLAIR) image data were acquired on 33 multiple sclerosis (MS) patients using a prototype Wave-CAIPI sequence (acceleration factor R = 3 × 2, 2.75 min) and a standard T2 -sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) FLAIR sequence (R = 2, 7.25 min). A hybrid denoising GAN entitled "HDnGAN" consisting of a 3D generator and a 2D discriminator was proposed to denoise highly accelerated Wave-CAIPI images. HDnGAN benefits from the improved image synthesis performance provided by the 3D generator and increased training samples from a limited number of patients for training the 2D discriminator. HDnGAN was trained and validated on data from 25 MS patients with the standard FLAIR images as the target and evaluated on data from eight MS patients not seen during training. HDnGAN was compared to other denoising methods including adaptive optimized nonlocal means (AONLM), block matching with 4D filtering (BM4D), modified U-Net (MU-Net), and 3D GAN in qualitative and quantitative analysis of output images using the mean squared error (MSE) and Visual Geometry Group (VGG) perceptual loss compared to standard FLAIR images, and a reader assessment by two neuroradiologists regarding sharpness, SNR, lesion conspicuity, and overall quality. Finally, the performance of these denoising methods was compared at higher noise levels using simulated data with added Rician noise.

Results: HDnGAN effectively denoised low-SNR Wave-CAIPI images with sharpness and rich textural details, which could be adjusted by controlling the contribution of the adversarial loss to the total loss when training the generator. Quantitatively, HDnGAN (λ = 10-3 ) achieved low MSE and the lowest VGG perceptual loss. The reader study showed that HDnGAN (λ = 10-3 ) significantly improved the SNR of Wave-CAIPI images (p < 0.001), outperformed AONLM (p = 0.015), BM4D (p < 0.001), MU-Net (p < 0.001), and 3D GAN (λ = 10-3 ) (p < 0.001) regarding image sharpness, and outperformed MU-Net (p < 0.001) and 3D GAN (λ = 10-3 ) (p = 0.001) regarding lesion conspicuity. The overall quality score of HDnGAN (λ = 10-3 ) (4.25 ± 0.43) was significantly higher than those from Wave-CAIPI (3.69 ± 0.46, p = 0.003), BM4D (3.50 ± 0.71, p = 0.001), MU-Net (3.25 ± 0.75, p < 0.001), and 3D GAN (λ = 10-3 ) (3.50 ± 0.50, p < 0.001), with no significant difference compared to standard FLAIR images (4.38 ± 0.48, p = 0.333). The advantages of HDnGAN over other methods were more obvious at higher noise levels.

Conclusion: HDnGAN provides robust and feasible denoising while preserving rich textural detail in empirical volumetric MRI data. Our study using empirical patient data and systematic evaluation supports the use of HDnGAN in combination with modern fast imaging techniques such as Wave-CAIPI to achieve high-fidelity fast volumetric MRI and represents an important step to the clinical translation of GANs.

Keywords: T2-weighted FLAIR; VGG perceptual loss; adversarial loss; convolutional neural network; fast imaging; multiple sclerosis.

PubMed Disclaimer

References

REFERENCES

    1. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774-781.
    1. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9(2):195-207.
    1. Polimeni JR, Fischl B, Greve DN, Wald LL. Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage. 2010;52(4):1334-1346.
    1. McNab JA, Polimeni JR, Wang R, et al. Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex. Neuroimage. 2013;69:87-100.
    1. De Coene B, Hajnal JV, Gatehouse P, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. Am J Neuroradiol. 1992;13(6):1555-1564.