Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm
- PMID: 34962021
- DOI: 10.1111/ene.15233
Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm
Abstract
Background and purpose: Accumulating evidence indicates that dynamic amplitude of low-frequency fluctuations (dALFF) or dynamic functional connectivity (dFC) can provide complementary information, distinct from static amplitude of low-frequency fluctuations (sALFF) or static functional connectivity (sFC), in detecting brain functional abnormalities in brain diseases. We aimed to examine whether dALFF and dFC can offer valuable information for the detection of functional brain abnormalities in patients with blepharospasm.
Methods: We collected resting-state functional magnetic resonance imaging data from 46 patients each of blepharospasm, hemifacial spasm (HFS), and healthy controls (HCs). We examined intergroup differences in sALFF and dALFF to investigate abnormal regional brain activity in patients with blepharospasm. Based on the dALFF results, we conducted seed-based sFC and dFC analyses to identify static and dynamic connectivity changes in brain networks centered on areas showing abnormal temporal variability of local brain activity in patients with blepharospasm.
Results: Compared with HCs, patients with blepharospasm displayed different brain functional change patterns characterized by increased sALFF in the left primary motor cortex (PMC) but increased dALFF variance in the right PMC. However, differences were not found between patients with HFS and HCs. Additionally, patients with blepharospasm exhibited decreased dFC strength, but no change in sFC, between right PMC and ipsilateral cerebellum compared with HCs; these findings were replicated when patients with blepharospasm were compared to those with HFS.
Conclusions: Our findings highlight that dALFF and dFC are complementary to sALFF and sFC and can provide valuable information for detecting brain functional abnormalities in blepharospasm. Blepharospasm may be a network disorder involving the cortico-ponto-cerebello-thalamo-cortical circuit.
Keywords: blepharospasm; dynamic amplitude of low-frequency fluctuations; dynamic functional connectivity; hemifacial spasm; resting-state functional magnetic resonance imaging.
© 2021 European Academy of Neurology.
References
REFERENCES
-
- Defazio G, Hallett M, Jinnah HA, Conte A, Berardelli A. Blepharospasm 40 years later. Mov Disord. 2017;32:498-509.
-
- Schmidt KE, Linden DE, Goebel R, Zanella FE, Lanfermann H, Zubcov AA. Striatal activation during blepharospasm revealed by fMRI. Neurology. 2003;60:1738-1743.
-
- Obermann M, Yaldizli O, de Greiff A, et al. Increased basal-ganglia activation performing a non-dystonia-related task in focal dystonia. Eur J Neurol. 2008;15:831-838.
-
- Zhou B, Wang J, Huang Y, Yang Y, Gong Q, Zhou D. A resting state functional magnetic resonance imaging study of patients with benign essential blepharospasm. J Neuroophthalmol. 2013;33:235-240.
-
- Yang J, Luo C, Song W, et al. Altered regional spontaneous neuronal activity in blepharospasm: a resting state fMRI study. J Neurol. 2013;260:2754-2760.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources