Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits
- PMID: 34962080
- DOI: 10.1111/jipb.13210
Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits
Abstract
Bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), which accounts for most of the cultivated wheat crop worldwide, is a typical allohexaploid with a genome derived from three diploid wild ancestors. Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication. Today, cultivated allohexaploid bread wheat has numerous advantageous traits, including adaptive plasticity, favorable yield traits, and extended end-use quality, which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop. In the past decade, rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop. Here, we summarize recent advances in characterizing major genetic factors underlying the origin, evolution, and improvement of polyploid wheats. We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.
Keywords: adaptation; bread wheat; domestication; end-use quality; photoperiod response; polyploid; semi-dwarfing breeding; vernalization.
© 2022 Institute of Botany, Chinese Academy of Sciences.
Similar articles
-
Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat.Mol Plant. 2015 Jun;8(6):847-59. doi: 10.1016/j.molp.2015.02.016. Epub 2015 Mar 5. Mol Plant. 2015. PMID: 25747845 Review.
-
Broadening the bread wheat D genome.Theor Appl Genet. 2019 May;132(5):1295-1307. doi: 10.1007/s00122-019-03299-z. Epub 2019 Feb 10. Theor Appl Genet. 2019. PMID: 30739154 Review.
-
Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization.BMC Biol. 2020 Dec 2;18(1):188. doi: 10.1186/s12915-020-00917-x. BMC Biol. 2020. PMID: 33267868 Free PMC article.
-
Origin and evolution of the bread wheat D genome.Nature. 2024 Sep;633(8031):848-855. doi: 10.1038/s41586-024-07808-z. Epub 2024 Aug 14. Nature. 2024. PMID: 39143210 Free PMC article.
-
Current Progress in Understanding and Recovering the Wheat Genes Lost in Evolution and Domestication.Int J Mol Sci. 2020 Aug 14;21(16):5836. doi: 10.3390/ijms21165836. Int J Mol Sci. 2020. PMID: 32823887 Free PMC article. Review.
Cited by
-
The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage.Int J Mol Sci. 2025 Feb 10;26(4):1468. doi: 10.3390/ijms26041468. Int J Mol Sci. 2025. PMID: 40003947 Free PMC article.
-
Identification and mechanism of wheat protein disulfide isomerase-promoted gluten network formation.PNAS Nexus. 2024 Aug 21;3(9):pgae356. doi: 10.1093/pnasnexus/pgae356. eCollection 2024 Sep. PNAS Nexus. 2024. PMID: 39238603 Free PMC article.
-
Introgression of an adult-plant powdery mildew resistance gene Pm4VL from Dasypyrum villosum chromosome 4V into bread wheat.Front Plant Sci. 2024 Jun 20;15:1401525. doi: 10.3389/fpls.2024.1401525. eCollection 2024. Front Plant Sci. 2024. PMID: 38966140 Free PMC article.
-
The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat.Plant Cell. 2024 Feb 26;36(3):605-625. doi: 10.1093/plcell/koad307. Plant Cell. 2024. PMID: 38079275 Free PMC article.
-
Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae.Plant Commun. 2025 Apr 14;6(4):101265. doi: 10.1016/j.xplc.2025.101265. Epub 2025 Jan 31. Plant Commun. 2025. PMID: 39893516 Free PMC article.
References
REFERENCES
-
- Adamski, N.M., Borrill, P., Brinton, J., Harrington, S.A., Marchal, C., Bentley, A.R., Bovill, W.D., Cattivelli, L., Cockram, J., Contreras-Moreira, B., Ford, B., Ghosh, S., Harwood, W., Hassani-Pak, K., Hayta, S., Hickey, L.T., Kanyuka, K., King, J., Maccaferrri, M., Naamati, G., Pozniak, C., Ramirez-Gonzalez, R.H., Sansaloni, C., Trevaskis, B., Wingen, L.U., Wulff, B.B.H., and Uauy, C. (2020). A roadmap for gene functional characterization in crops with large genomes: Lessons from polyploid wheat. eLife, 9: e55646.
-
- Adamski, N.M., Simmonds, J., Brinton, J.F., Backhaus, A.E., Chen, Y., Smedley, M., Hayta, S., Florio, T., Crane, P., Scott, P., Pieri, A., Hall, O., Barclay, J.E., Clayton, M., Doonan, J.H., Nibau, C., and Uauy, C. (2021). Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. Plant Cell 33: 2296-2319.
-
- Albani, D., Hammond-Kosack, M.C., Smith, C., Conlan, S., Colot, V., Holdsworth, M., and Bevan, M.W. (1997). The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9: 171-184.
-
- An, D., Su, J., Liu, Q., Zhu, Y., Tong, Y., Li, J., Jing, R., Li, B., and Li, Z. (2006). Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284: 73-84.
-
- Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., Asyraf, M.H.M., Athiyannan, N., Cheema, J., Yu, G., Kangara, N., Ghosh, S., Szabo, L.J., Poland, J., Bariana, H., Jones, J.D.G., Bentley, A.R., Ayliffe, M., Olson, E., Xu, S.S., Steffenson, B.J., Lagudah, E., and Wulff, B.B.H. (2019). Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37: 139-143.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous