Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Feb;64(2):536-563.
doi: 10.1111/jipb.13210.

Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits

Affiliations
Review

Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits

Jie Liu et al. J Integr Plant Biol. 2022 Feb.

Abstract

Bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), which accounts for most of the cultivated wheat crop worldwide, is a typical allohexaploid with a genome derived from three diploid wild ancestors. Bread wheat arose and evolved via two sequential allopolyploidization events and was further polished through multiple steps of domestication. Today, cultivated allohexaploid bread wheat has numerous advantageous traits, including adaptive plasticity, favorable yield traits, and extended end-use quality, which have enabled its cultivation well beyond the ranges of its tetraploid and diploid progenitors to become a global staple food crop. In the past decade, rapid advances in wheat genomic research have considerably accelerated our understanding of the bases for the shaping of complex agronomic traits in this polyploid crop. Here, we summarize recent advances in characterizing major genetic factors underlying the origin, evolution, and improvement of polyploid wheats. We end with a brief discussion of the future prospects for the design of gene cloning strategies and modern wheat breeding.

Keywords: adaptation; bread wheat; domestication; end-use quality; photoperiod response; polyploid; semi-dwarfing breeding; vernalization.

PubMed Disclaimer

Similar articles

  • Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat.
    Li AL, Geng SF, Zhang LQ, Liu DC, Mao L. Li AL, et al. Mol Plant. 2015 Jun;8(6):847-59. doi: 10.1016/j.molp.2015.02.016. Epub 2015 Mar 5. Mol Plant. 2015. PMID: 25747845 Review.
  • Broadening the bread wheat D genome.
    Mirzaghaderi G, Mason AS. Mirzaghaderi G, et al. Theor Appl Genet. 2019 May;132(5):1295-1307. doi: 10.1007/s00122-019-03299-z. Epub 2019 Feb 10. Theor Appl Genet. 2019. PMID: 30739154 Review.
  • Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization.
    Zhao Y, Dong L, Jiang C, Wang X, Xie J, Rashid MAR, Liu Y, Li M, Bu Z, Wang H, Ma X, Sun S, Wang X, Bo C, Zhou T, Kong L. Zhao Y, et al. BMC Biol. 2020 Dec 2;18(1):188. doi: 10.1186/s12915-020-00917-x. BMC Biol. 2020. PMID: 33267868 Free PMC article.
  • Origin and evolution of the bread wheat D genome.
    Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, Gardener C, Quiroz-Chávez J, Rustamova SM, Elkot AF, Patpour M, Rasheed A, Mao L, Lagudah ES, Periyannan SK, Sharon A, Himmelbach A, Reif JC, Knauft M, Mascher M, Stein N, Chayut N, Ghosh S, Perovic D, Putra A, Perera AB, Hu CY, Yu G, Ahmed HI, Laquai KD, Rivera LF, Chen R, Wang Y, Gao X, Liu S, Raupp WJ, Olson EL, Lee JY, Chhuneja P, Kaur S, Zhang P, Park RF, Ding Y, Liu DC, Li W, Nasyrova FY, Dvorak J, Abbasi M, Li M, Kumar N, Meyer WB, Boshoff WHP, Steffenson BJ, Matny O, Sharma PK, Tiwari VK, Grewal S, Pozniak CJ, Chawla HS, Ens J, Dunning LT, Kolmer JA, Lazo GR, Xu SS, Gu YQ, Xu X, Uauy C, Abrouk M, Bougouffa S, Brar GS, Wulff BBH, Krattinger SG. Cavalet-Giorsa E, et al. Nature. 2024 Sep;633(8031):848-855. doi: 10.1038/s41586-024-07808-z. Epub 2024 Aug 14. Nature. 2024. PMID: 39143210 Free PMC article.
  • Current Progress in Understanding and Recovering the Wheat Genes Lost in Evolution and Domestication.
    Rahman S, Islam S, Yu Z, She M, Nevo E, Ma W. Rahman S, et al. Int J Mol Sci. 2020 Aug 14;21(16):5836. doi: 10.3390/ijms21165836. Int J Mol Sci. 2020. PMID: 32823887 Free PMC article. Review.

Cited by

References

REFERENCES

    1. Adamski, N.M., Borrill, P., Brinton, J., Harrington, S.A., Marchal, C., Bentley, A.R., Bovill, W.D., Cattivelli, L., Cockram, J., Contreras-Moreira, B., Ford, B., Ghosh, S., Harwood, W., Hassani-Pak, K., Hayta, S., Hickey, L.T., Kanyuka, K., King, J., Maccaferrri, M., Naamati, G., Pozniak, C., Ramirez-Gonzalez, R.H., Sansaloni, C., Trevaskis, B., Wingen, L.U., Wulff, B.B.H., and Uauy, C. (2020). A roadmap for gene functional characterization in crops with large genomes: Lessons from polyploid wheat. eLife, 9: e55646.
    1. Adamski, N.M., Simmonds, J., Brinton, J.F., Backhaus, A.E., Chen, Y., Smedley, M., Hayta, S., Florio, T., Crane, P., Scott, P., Pieri, A., Hall, O., Barclay, J.E., Clayton, M., Doonan, J.H., Nibau, C., and Uauy, C. (2021). Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. Plant Cell 33: 2296-2319.
    1. Albani, D., Hammond-Kosack, M.C., Smith, C., Conlan, S., Colot, V., Holdsworth, M., and Bevan, M.W. (1997). The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9: 171-184.
    1. An, D., Su, J., Liu, Q., Zhu, Y., Tong, Y., Li, J., Jing, R., Li, B., and Li, Z. (2006). Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284: 73-84.
    1. Arora, S., Steuernagel, B., Gaurav, K., Chandramohan, S., Long, Y., Matny, O., Johnson, R., Enk, J., Periyannan, S., Singh, N., Asyraf, M.H.M., Athiyannan, N., Cheema, J., Yu, G., Kangara, N., Ghosh, S., Szabo, L.J., Poland, J., Bariana, H., Jones, J.D.G., Bentley, A.R., Ayliffe, M., Olson, E., Xu, S.S., Steffenson, B.J., Lagudah, E., and Wulff, B.B.H. (2019). Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37: 139-143.

LinkOut - more resources