Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec 10;6(50):35093-35103.
doi: 10.1021/acsomega.1c05875. eCollection 2021 Dec 21.

Crown Ether-Derived Chiral BINOL: Enantioselective Michael Addition of Alkenyl Boronic Acids to α,β-Unsaturated Ketones

Affiliations

Crown Ether-Derived Chiral BINOL: Enantioselective Michael Addition of Alkenyl Boronic Acids to α,β-Unsaturated Ketones

Jia-Ju Tao et al. ACS Omega. .

Abstract

A new class of aza-crown ether-derived chiral BINOL catalysts were designed, synthesized, and applied in the asymmetric Michael addition of alkenylboronic acids to α,β-unsaturated ketones. It was found that introducing aza-crown ethers to the BINOL catalyst could achieve apparently higher enantioselectivity than a similar BINOL catalyst without aza-crown ethers did, although the host-guest complexation of alkali ions by the aza-crown ethers could not further improve the catalysis effectiveness. Under mediation of the aza-crown ether-derived chiral BINOL and in the presence of a magnesium salt, an array of chiral γ,δ-unsaturated ketones were furnished in good enantioselectivities (81-95% ees).

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthesis of the Crown Ether-Derived BINOL Catalysts (S)-1
Scheme 2
Scheme 2. Substrate Scope of α,β-Unsaturated Ketones and Styrylboronic Acids
Reaction conditions: 0.04 mmol α,β-unsaturated carbonyl substrate, substrate concentration = 0.05 M. bIsolated yield. cDetermined by HPLC analysis.
Figure 1
Figure 1
Proposed Catalytic Mechanism.

Similar articles

References

    1. Dondoni A.; Massi A. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem., Int. Ed. 2008, 47, 4638–4660. 10.1002/anie.200704684. - DOI - PubMed
    2. Almaşi D.; Alonso D. A.; Najera C. Organocatalytic asymmetric conjugate additions. Tetrahedron: Asymmetry 2007, 18, 299–365. 10.1002/chin.200727220. - DOI
    3. Vicario J.; Badía D.; Carrillo L. Organocatalytic enantioselective Michael and hetero-Michael reactions. Synthesis 2007, 2007, 2065–2092. 10.1055/s-2007-983747. - DOI
    4. Tsogoeva S. B. Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem. 2007, 2007, 1701–1716. 10.1002/ejoc.200600653. - DOI
    5. Volla C. M. R.; Atodiresei I.; Rueping M. Catalytic C-C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. Chem. Rev. 2014, 114, 2390–2431. 10.1021/cr400215u. - DOI - PubMed
    1. Li P.; Wang J.; Kwong F. Y.. Asymmetric Michael Addition and Related Reactions. In Stereoselective Synthesis of Drugs and Natural Products, 2V Set; Andrushko V., Andrushko N., Eds.; John Wiley & Sons: Hoboken, 2013; P249–P270.
    2. Heravi M.; Hajiabbasi P.; Hamidi H. Recent Development in the Asymmetric Michael Addition for Carbon-Carbon Bond Formation. Curr. Org. Chem. 2014, 18, 489–511. 10.2174/13852728113176660149. - DOI
    3. Trost B. M.; Jiang C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis 2006, 369–396. 10.1055/s-2006-926302. - DOI
    1. Christoffers J.; Koripelly G.; Rosiak A.; Rössle M. Recent advances in metal-catalyzed asymmetric conjugate additions. Synthesis 2007, 2007, 1279–1300. 10.1055/s-2007-966005. - DOI
    2. Zheng K.; Liu X.; Feng X. Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chem. Rev. 2018, 118, 7586–7656. 10.1021/acs.chemrev.7b00692. - DOI - PubMed
    3. Jia T.; Cao P.; Liao J. Enantioselective Synthesis of gem-Diarylalkanes by Transition Metal-Catalyzed Asymmetric Arylations (TMCAAr). Chem. Sci. 2018, 9, 546–559. 10.1039/c7sc03404k. - DOI - PMC - PubMed
    1. Hayashi T. Rhodium-catalyzed asymmetric addition of aryl- and alkenylboron reagents to electron-deficient olefins. Pure Appl. Chem. 2004, 76, 465–475. 10.1351/pac200476030465. - DOI
    2. Fagnou K.; Lautens M. Rhodium-Catalyzed Carbon–Carbon Bond Forming Reactions of Organometallic Compounds. Chem. Rev. 2003, 103, 169–196. 10.1021/cr020007u. - DOI - PubMed
    3. Hayashi T.; Yamasaki K. Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. Chem. Rev. 2003, 103, 2829–2844. 10.1021/cr020022z. - DOI - PubMed
    4. Heravi M. M.; Dehghani M.; Zadsirjan V. αβRh-catalyzed asymmetric 1,4-addition reactions to α,β-unsaturated carbonyl and related compounds: an update. Tetrahedron: Asymmetry 2016, 27, 513–588. 10.1016/j.tetasy.2016.05.004. - DOI
    5. Tian P.; Dong H.-Q.; Lin G.-Q. Rhodium-Catalyzed Asymmetric Arylation. ACS Catal. 2012, 2, 95–119. 10.1021/cs200562n. - DOI
    1. Takaya Y.; Ogasawara M.; Hayashi T.; Sakai M.; Miyaura N. Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. J. Am. Chem. Soc. 1998, 120, 5579–5580. 10.1021/ja980666h. - DOI
    2. Nishimura T.; Takiguchi Y.; Hayashi T. αβEffect of Chiral Diene Ligands in Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to α,β-Unsaturated Sulfonyl Compounds. J. Am. Chem. Soc. 2012, 134, 9086–9089. 10.1021/ja303109q. - DOI - PubMed
    3. Yu Y.-N.; Xu M.-H. Enantioselective Synthesis of Chiral 3-Aryl-1-indanones through Rhodium-Catalyzed Asymmetric Intramolecular 1,4-Addition. J. Org. Chem. 2013, 78, 2736–2741. 10.1021/jo302656s. - DOI - PubMed
    4. Wang Z.; Chen W.-W.; Xu M.-H. Rhodium-catalyzed Asymmetric Arylation of Nitroalkenes Powered by Simple Chiral Sulfur-Olefin Ligands. J. Chin. Chem. Soc. 2018, 65, 331–336. 10.1002/jccs.201700328. - DOI
    5. Chen Q.; Li L.; Zhou G.; Ma X.; Zhang L.; Guo F.; Luo Y.; Xia W. Chiral Phosphorus-Olefin Ligands for the RhI-Catalyzed Asymmetric Addition of Aryl Boronic Acids to Electron-Deficient Olefins. Chem.—Asian J. 2016, 11, 1518–1522. 10.1002/asia.201600143. - DOI - PubMed
    6. Miyamura H.; Nishino K.; Yasukawa T.; Kobayashi S. Rhodium-catalyzed asymmetric 1,4-addition reactions of aryl boronic acids with nitroalkenes: reaction mechanism and development of homogeneous and heterogeneous catalysts. Chem. Sci. 2017, 8, 8362–8372. 10.1039/c7sc03025h. - DOI - PMC - PubMed
    7. Yin L.; Zhang D.; Xing J.; Wang Y.; Wu C.; Lu T.; Chen Y.; Hayashi T.; Dou X. γAccess to Chiral HWE Reagents by Rhodium-Catalyzed Asymmetric Arylation of γ,δ-Unsaturated β-Ketophosphonates. J. Org. Chem. 2018, 83, 5869–5875. 10.1021/acs.joc.8b00952. - DOI - PubMed
    8. Zhu H.; Yin L.; Chang Z.; Wang Y.; Dou X. Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Carbonyl-Activated Alkenyl Azaarenes. Adv. Synth. Catal. 2020, 362, 3142–3147. 10.1002/adsc.202000211. - DOI