Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;28(9):3110-3144.
doi: 10.1111/gcb.16060. Epub 2022 Feb 11.

Global maps of soil temperature

Jonas J Lembrechts  1 Johan van den Hoogen  2 Juha Aalto  3   4 Michael B Ashcroft  5   6 Pieter De Frenne  7 Julia Kemppinen  8 Martin Kopecký  9   10 Miska Luoto  4 Ilya M D Maclean  11 Thomas W Crowther  2 Joseph J Bailey  12 Stef Haesen  13 David H Klinges  14   15 Pekka Niittynen  4 Brett R Scheffers  16 Koenraad Van Meerbeek  13 Peter Aartsma  17 Otar Abdalaze  18 Mehdi Abedi  19 Rien Aerts  20 Negar Ahmadian  19 Antje Ahrends  21 Juha M Alatalo  22 Jake M Alexander  23 Camille Nina Allonsius  24 Jan Altman  9   10 Christof Ammann  25 Christian Andres  26 Christopher Andrews  27 Jonas Ardö  28 Nicola Arriga  29 Alberto Arzac  30 Valeria Aschero  31   32 Rafael L Assis  33 Jakob Johann Assmann  34   35 Maaike Y Bader  36 Khadijeh Bahalkeh  19 Peter Barančok  37 Isabel C Barrio  38 Agustina Barros  32 Matti Barthel  26 Edmund W Basham  14 Marijn Bauters  39 Manuele Bazzichetto  40 Luca Belelli Marchesini  41 Michael C Bell  42 Juan C Benavides  43 José Luis Benito Alonso  44 Bernd J Berauer  45   46 Jarle W Bjerke  47 Robert G Björk  48   49 Mats P Björkman  48   49 Katrin Björnsdóttir  50 Benjamin Blonder  51 Pascal Boeckx  39 Julia Boike  52   53 Stef Bokhorst  20 Bárbara N S Brum  54 Josef Brůna  9 Nina Buchmann  26 Pauline Buysse  55 José Luís Camargo  56 Otávio C Campoe  57 Onur Candan  58 Rafaella Canessa  36   59 Nicoletta Cannone  60 Michele Carbognani  61 Jofre Carnicer  62   63 Angélica Casanova-Katny  64 Simone Cesarz  65   66 Bogdan Chojnicki  67 Philippe Choler  68   69 Steven L Chown  70 Edgar F Cifuentes  71 Marek Čiliak  72 Tamara Contador  73   74 Peter Convey  75 Elisabeth J Cooper  76 Edoardo Cremonese  77 Salvatore R Curasi  78 Robin Curtis  11 Maurizio Cutini  79 C Johan Dahlberg  80   81 Gergana N Daskalova  82 Miguel Angel de Pablo  83 Stefano Della Chiesa  84 Jürgen Dengler  65   85   86 Bart Deronde  87 Patrice Descombes  88 Valter Di Cecco  89 Michele Di Musciano  90 Jan Dick  27 Romina D Dimarco  91   92 Jiri Dolezal  9   93 Ellen Dorrepaal  94 Jiří Dušek  95 Nico Eisenhauer  65   66 Lars Eklundh  28 Todd E Erickson  96   97 Brigitta Erschbamer  98 Werner Eugster  26 Robert M Ewers  99 Dan A Exton  100 Nicolas Fanin  101 Fatih Fazlioglu  58 Iris Feigenwinter  26 Giuseppe Fenu  102 Olga Ferlian  65   66 M Rosa Fernández Calzado  103 Eduardo Fernández-Pascual  104 Manfred Finckh  105 Rebecca Finger Higgens  106 T'ai G W Forte  61 Erika C Freeman  107 Esther R Frei  108   109   110 Eduardo Fuentes-Lillo  1   111   112 Rafael A García  111   113 María B García  114 Charly Géron  1   115 Mana Gharun  26 Dany Ghosn  116 Khatuna Gigauri  117 Anne Gobin  118   119 Ignacio Goded  29 Mathias Goeckede  120 Felix Gottschall  65   66 Keith Goulding  121 Sanne Govaert  7 Bente Jessen Graae  122 Sarah Greenwood  123 Caroline Greiser  80 Achim Grelle  124 Benoit Guénard  125 Mauro Guglielmin  126 Joannès Guillemot  127   128 Peter Haase  129   130 Sylvia Haider  65   131 Aud H Halbritter  132 Maroof Hamid  133 Albin Hammerle  134 Arndt Hampe  135 Siri V Haugum  132   136 Lucia Hederová  9 Bernard Heinesch  137 Carole Helfter  27 Daniel Hepenstrick  138 Maximiliane Herberich  139 Mathias Herbst  140 Luise Hermanutz  141 David S Hik  142 Raúl Hoffrén  143 Jürgen Homeier  144   145 Lukas Hörtnagl  26 Toke T Høye  146 Filip Hrbacek  147 Kristoffer Hylander  80 Hiroki Iwata  148 Marcin Antoni Jackowicz-Korczynski  28   149 Hervé Jactel  150 Järvi Järveoja  151 Szymon Jastrzębowski  152 Anke Jentsch  46   153 Juan J Jiménez  154 Ingibjörg S Jónsdóttir  155 Tommaso Jucker  156 Alistair S Jump  157 Radoslaw Juszczak  67 Róbert Kanka  37 Vít Kašpar  9   158 George Kazakis  116 Julia Kelly  159 Anzar A Khuroo  133 Leif Klemedtsson  48 Marcin Klisz  152 Natascha Kljun  159 Alexander Knohl  160 Johannes Kobler  161 Jozef Kollár  37 Martyna M Kotowska  145 Bence Kovács  162 Juergen Kreyling  163 Andrea Lamprecht  164 Simone I Lang  165 Christian Larson  166 Keith Larson  167 Kamil Laska  147   168 Guerric le Maire  127   128 Rachel I Leihy  169 Luc Lens  170 Bengt Liljebladh  48 Annalea Lohila  171   172 Juan Lorite  103   173 Benjamin Loubet  55 Joshua Lynn  132 Martin Macek  9 Roy Mackenzie  73 Enzo Magliulo  174 Regine Maier  26 Francesco Malfasi  60 František Máliš  175 Matěj Man  9 Giovanni Manca  29 Antonio Manco  174 Tanguy Manise  137 Paraskevi Manolaki  176   177   178 Felipe Marciniak  54 Radim Matula  10   179 Ana Clara Mazzolari  32 Sergiy Medinets  180   181   182 Volodymyr Medinets  180 Camille Meeussen  7 Sonia Merinero  80 Rita de Cássia Guimarães Mesquita  183 Katrin Meusburger  184 Filip J R Meysman  185 Sean T Michaletz  186 Ann Milbau  187 Dmitry Moiseev  188 Pavel Moiseev  188 Andrea Mondoni  189 Ruth Monfries  21 Leonardo Montagnani  190 Mikel Moriana-Armendariz  76 Umberto Morra di Cella  191 Martin Mörsdorf  192 Jonathan R Mosedale  193 Lena Muffler  145 Miriam Muñoz-Rojas  194   195 Jonathan A Myers  196 Isla H Myers-Smith  82 Laszlo Nagy  197 Marianna Nardino  198 Ilona Naujokaitis-Lewis  199 Emily Newling  200 Lena Nicklas  98 Georg Niedrist  201 Armin Niessner  202 Mats B Nilsson  151 Signe Normand  34   35 Marcelo D Nosetto  203   204 Yann Nouvellon  127   128 Martin A Nuñez  92   205 Romà Ogaya  206   207 Jérôme Ogée  101 Joseph Okello  39   208   209 Janusz Olejnik  210 Jørgen Eivind Olesen  181 Øystein H Opedal  211 Simone Orsenigo  189 Andrej Palaj  37 Timo Pampuch  212 Alexey V Panov  213 Meelis Pärtel  214 Ada Pastor  177 Aníbal Pauchard  111   113 Harald Pauli  164 Marian Pavelka  95 William D Pearse  215   216 Matthias Peichl  151 Loïc Pellissier  217   218 Rachel M Penczykowski  196 Josep Penuelas  206   207 Matteo Petit Bon  9   76   165 Alessandro Petraglia  61 Shyam S Phartyal  219 Gareth K Phoenix  220 Casimiro Pio  221 Andrea Pitacco  222 Camille Pitteloud  217   218 Roman Plichta  179 Francesco Porro  189 Miguel Portillo-Estrada  1 Jérôme Poulenard  223 Rafael Poyatos  63   224 Anatoly S Prokushkin  30   213 Radoslaw Puchalka  225   226 Mihai Pușcaș  227   228   229 Dajana Radujković  1 Krystal Randall  5   230 Amanda Ratier Backes  65   131 Sabine Remmele  202 Wolfram Remmers  231 David Renault  40   232 Anita C Risch  110 Christian Rixen  108   109 Sharon A Robinson  5   230 Bjorn J M Robroek  233 Adrian V Rocha  234 Christian Rossi  235   236 Graziano Rossi  189 Olivier Roupsard  237   238   239 Alexey V Rubtsov  30 Patrick Saccone  164 Clotilde Sagot  240 Jhonatan Sallo Bravo  241   242 Cinthya C Santos  243 Judith M Sarneel  244 Tobias Scharnweber  212 Jonas Schmeddes  163 Marius Schmidt  245 Thomas Scholten  246 Max Schuchardt  46 Naomi Schwartz  247 Tony Scott  121 Julia Seeber  134   201 Ana Cristina Segalin de Andrade  243 Tim Seipel  166 Philipp Semenchuk  248 Rebecca A Senior  249 Josep M Serra-Diaz  250 Piotr Sewerniak  251 Ankit Shekhar  26 Nikita V Sidenko  213 Lukas Siebicke  160 Laura Siegwart Collier  141   252 Elizabeth Simpson  215 David P Siqueira  253 Zuzana Sitková  254 Johan Six  26 Marko Smiljanic  212 Stuart W Smith  122   255 Sarah Smith-Tripp  256 Ben Somers  257 Mia Vedel Sørensen  122 José João L L Souza  258 Bartolomeu Israel Souza  259 Arildo Souza Dias  243   260 Marko J Spasojevic  261 James D M Speed  262 Fabien Spicher  263 Angela Stanisci  264 Klaus Steinbauer  164 Rainer Steinbrecher  265 Michael Steinwandter  201 Michael Stemkovski  215 Jörg G Stephan  266 Christian Stiegler  160 Stefan Stoll  231   267 Martin Svátek  179 Miroslav Svoboda  10 Torbern Tagesson  28   268 Andrew J Tanentzap  107 Franziska Tanneberger  269 Jean-Paul Theurillat  270   271 Haydn J D Thomas  82 Andrew D Thomas  272 Katja Tielbörger  59 Marcello Tomaselli  61 Urs Albert Treier  34   35 Mario Trouillier  212 Pavel Dan Turtureanu  227   229   273 Rosamond Tutton  274 Vilna A Tyystjärvi  4   275 Masahito Ueyama  276 Karol Ujházy  175 Mariana Ujházyová  72 Domas Uogintas  277 Anastasiya V Urban  179   213 Josef Urban  30   179 Marek Urbaniak  210 Tudor-Mihai Ursu  278 Francesco Primo Vaccari  279 Stijn Van de Vondel  280 Liesbeth van den Brink  59 Maarten Van Geel  281 Vigdis Vandvik  132 Pieter Vangansbeke  7 Andrej Varlagin  282 G F Veen  283 Elmar Veenendaal  284 Susanna E Venn  285 Hans Verbeeck  286 Erik Verbrugggen  1 Frank G A Verheijen  287 Luis Villar  288 Luca Vitale  289 Pascal Vittoz  290 Maria Vives-Ingla  63 Jonathan von Oppen  34   35 Josefine Walz  167 Runxi Wang  125 Yifeng Wang  274 Robert G Way  274 Ronja E M Wedegärtner  122 Robert Weigel  145 Jan Wild  9   158 Matthew Wilkinson  42 Martin Wilmking  212 Lisa Wingate  101 Manuela Winkler  164 Sonja Wipf  108   235 Georg Wohlfahrt  134 Georgios Xenakis  291 Yan Yang  292 Zicheng Yu  293   294 Kailiang Yu  295 Florian Zellweger  110 Jian Zhang  296 Zhaochen Zhang  296 Peng Zhao  151 Klaudia Ziemblińska  210 Reiner Zimmermann  202   297 Shengwei Zong  298 Viacheslav I Zyryanov  213 Ivan Nijs  1 Jonathan Lenoir  263
Affiliations

Global maps of soil temperature

Jonas J Lembrechts et al. Glob Chang Biol. 2022 May.

Erratum in

  • Corrigendum.
    [No authors listed] [No authors listed] Glob Chang Biol. 2023 Nov;29(22):6423-6433. doi: 10.1111/gcb.16910. Epub 2023 Sep 1. Glob Chang Biol. 2023. PMID: 37655678 Free PMC article. No abstract available.

Abstract

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.

Keywords: bioclimatic variables; global maps; microclimate; near-surface temperatures; soil temperature; soil-dwelling organisms; temperature offset; weather stations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIGURE 1
FIGURE 1
Temperature offsets between soil and air temperature differed significantly among biomes. (a) Distribution of in situ measurement locations across the globe, coloured by the mean annual temperature offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm depth) and gridded air temperature (ERA5‐Land). Offsets were averaged per hexagon, each with a size of approximately 70,000 km². Mollweide projection. (b) Mean annual temperature offsets per Whittaker biome (adapted from Whittaker 1970, based on geographic location of sensors averaged at 1 km2; 0–5 cm depth), ordered by mean temperature offset and coloured by mean annual precipitation. (c–d) Distribution of sensors in 2D climate space for the topsoil (c, 0–5 cm depth, N = 4530) and the second layer (d, 5–15 cm depth, N = 3989). Colours of hexagons indicate the number of sensors at each climatic location, with a resolution of 1.2°C (x‐axis) and 100 mm (y‐axis). Grey dots in the background represent the global variation in climatic space (obtained by sampling 1,000,000 random locations from the CHELSA world maps). Overlay with grey lines depicts a delineation of Whittaker biomes
FIGURE 2
FIGURE 2
Global modelled temperature offsets between soil and air temperature show strong spatiotemporal variation across months. Modelled annual (a) and monthly (b–m) temperature offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm) and gridded air temperature. Positive (red) values indicate soils that are warmer than the air. Dark grey represents regions outside the modelling area
FIGURE 3
FIGURE 3
Soil bioclimatic variables. Global maps of bioclimatic variables for topsoil (0–5 cm depth) climate, calculated using the maps of the monthly offsets between soil and air temperature (see Figure 2), and the bioclimatic variables for air temperature from CHELSA
FIGURE 4
FIGURE 4
Mean annual soil temperature shows significantly lower spatial variability than air temperature. (a) Global map of mean annual topsoil temperature (SBIO1, 0–5 cm depth, in °C), created by adding the monthly offset between soil and air temperature for the period 2000–2020 (Figure 2) to the monthly air temperature from CHELSA. A black mask is used to exclude regions where our models are extrapolating (i.e. interpolation values in Figure 5 are <0.9, 18% of pixels). Dark grey represents regions outside the modelling area. (b–c) Density plots of mean annual soil temperature across the globe (b) and for each Whittaker biome separately (c) for SBIO1 (dark grey, soil temperature), compared with BIO1 from CHELSA (light grey, air temperature), created by extracting 1,000,000 random points from the 1‐km² gridded bioclimatic products. The numbers in (c) represent the standard deviations of air temperature (light grey) and soil temperature (dark grey). Biomes are ordered according to the median annual soil temperature values (vertical black line) from the highest temperature (subtropical desert) to the lowest (tundra)
FIGURE 5
FIGURE 5
Models of the temperature offset between soil and air temperature have low standard deviations and good global coverage. Analyses for the temperature offset between in situ measured topsoil (0–5 cm depth) temperature and gridded air temperature. (a) Standard deviation (in °C) over the predictions from a cross‐validation analysis that iteratively varied the set of covariates (explanatory data layers) and model hyperparameters across 100 models and evaluated model strength using 10‐fold cross‐validation, for January (left) and July (right), as examples of the two most contrasting months. (b) The fraction of axes in the multidimensional environmental space for which the pixel lies inside the range of data covered by the sensors in the database. Low values indicate increased extrapolation
FIGURE 6
FIGURE 6
The mean annual soil temperature (SBIO1, 1 x 1 km resolution) modelled here is consistently cooler than ERA5L (9 x 9 km) soil temperature in forested areas. (a) Spatial representation of the difference between SBIO1 based on our model and based on ERA5L soil temperature data. Negative values (blue colours) indicate areas where our model predicts cooler soil temperature. Dark grey areas (Greenland and Antarctica) are excluded from our models. Asterisk in Scandinavia indicates the highlighted area in panels d to f (see below). (b) Distribution of the difference between SBIO1 and ERA5L along the macroclimatic gradient (represented by SBIO1 itself) based on a random subsample of 50,000 points from the map in a). Red line from a Generalized Additive Model (GAM) with k = 4. (c‐e) High‐resolution zoomed panels of an area of high elevational contrast in Norway (from 66.0–66.4°N, 15.0–16.0°E) visualizing SBIO1 (c), ERA5L (d) and their difference (e), to highlight the higher spatial resolution as obtained with SBIO1

References

    1. Abatzoglou, J. T. , Dobrowski, S. Z. , Parks, S. A. , & Hegewisch, K. C. (2018). TerraClimate, a high‐resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5, 170191. 10.1038/sdata.2017.191 - DOI - PMC - PubMed
    1. Amatulli, G. , Domisch, S. , Tuanmu, M.‐N. , Parmentier, B. , Ranipeta, A. , Malczyk, J. , & Jetz, W. (2018). A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. 10.1038/sdata.2018.40 - DOI - PMC - PubMed
    1. Antão, L. H. , Bates, A. E. , Blowes, S. A. , Waldock, C. , Supp, S. R. , Magurran, A. E. , Dornelas, M. , & Schipper, A. M. (2020). Temperature‐related biodiversity change across temperate marine and terrestrial systems. Nature Ecology and Evolution, 4, 927–933. 10.1038/s41559-020-1185-7 - DOI - PubMed
    1. Ashcroft, M. B. , Cavanagh, M. , Eldridge, M. D. B. , & Gollan, J. R. (2014). Testing the ability of topoclimatic grids of extreme temperatures to explain the distribution of the endangered brush‐tailed rock‐wallaby (Petrogale penicillata). Journal of Biogeography, 41, 1402–1413.
    1. Ashcroft, M. B. , Chisholm, L. A. , & French, K. O. (2008). The effect of exposure on landscape scale soil surface temperatures and species distribution models. Landscape Ecology, 23, 211–225. 10.1007/s10980-007-9181-8 - DOI