Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 12;14(1):1373-1388.
doi: 10.1021/acsami.1c18779. Epub 2021 Dec 30.

Designing Efficient Si Quantum Dots and LEDs by Quantifying Ligand Effects

Affiliations

Designing Efficient Si Quantum Dots and LEDs by Quantifying Ligand Effects

Taisei Ono et al. ACS Appl Mater Interfaces. .

Abstract

The impact of colloidal silicon quantum dots (SiQDs) on next-generation light sources is promising. However, factors determining the efficiency of SiQDs, such as the photoluminescence (PL) wavelength, PL quantum yield (PLQY), and the SiQD LED performance based on the type of ligand, ligand coverage, stress, and dangling bonds, have not been quantified. Characterizing these variables would accelerate the design and implementation of SiQDs. Herein, colloidal SiQDs were synthesized by pyrolyzing hydrogen silsesquioxane and their surfaces were terminated with 1-decene by either thermal hydrosilylation (HT-SiQDs) or room-temperature hydrosilylation using PCl5 (RT-SiQD). As a result, PL, PL-excitation, and ultraviolet-visible absorption spectra were similar, but their PLQYs were significantly different: 54% (RT-SiQDs) vs 19% (HT-SiQDs). To understand their similarities and differences, surface coverages (dangling bonds, Si-H (≡Si-H1, ═Si-H2, and -Si-H3), Si-O-Si, Si-C, Si-Cl) were determined. A core stress analysis established that a single ligand terminated to a SiQD bond site stretched the Si-Si bond length by 0.3%. From the two well-defined SiQDs, the PLQY and SiQD LED efficiency were attributed to four factors: low coverage of insulator ligands, the Cl ligand effect on radiative and nonradiative rates, negligible dangling bonds, and a SiQD core with low tensile stress. The PLQY of the RT-SiQDs in toluene was 80%. In addition, the 20× electroluminescence intensity difference of the LEDs originated from a 10× difference in current density and a 2× difference in Auger recombination. The concepts demonstrated here can be applied to further improve the PLQY and LED efficiencies of SiQDs with other ligands.

Keywords: ESR; HSQ; LED; POSS; Raman; nanocrystal; nanoparticle.

PubMed Disclaimer

LinkOut - more resources