Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;1865(3):194782.
doi: 10.1016/j.bbagrm.2021.194782. Epub 2021 Dec 29.

METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation

Affiliations

METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation

Da Cheng et al. Biochim Biophys Acta Gene Regul Mech. 2022 Apr.

Abstract

Hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF) is a clinical syndrome of severe liver damage. HBV infection is affected by N6-methyladenosine (m6A) RNA modification. Here, we investigated whether methyltransferase-like 3 (METTL3)-mediated m6A methylation can affect ACLF. Human hepatic cells (THLE-2) were treated with lipopolysaccharide (LPS) to induce cell damage. Proliferation, apoptosis and m6A modification were measured by MTT assay, flow cytometry and Dot blot assay. Our results showed that HBV infection significantly enhanced the levels of m6A modification and elevated the expression of METTL3 and mature-miR-146a-5p in THLE-2 cells, which was repressed by cycloleucine (m6A inhibitor). METTL3 overexpression enhanced m6A modification and promoted mature-miR-146a-5p expression. METTL3 overexpression promoted HBV replication and apoptosis, enhanced the levels of pro-inflammatory cytokines, hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg), and repressed cell proliferation in THLE-2 cells, which attributed to repress miR-146a-5p maturation. Moreover, a severe liver failure mouse model was established by HBV infection to verify the impact of METTL3 knockdown on liver damage in vivo. HBV-infection led to a severe liver damage and increase of apoptosis in hepatic tissues of mice, which was abolished by METTL3 knockdown. METTL3 knockdown reduced METTL3 expression and impeded miR-146a-5p maturation in HBV-infected mice. In conclusion, this work demonstrates that METTL3 inhibition ameliorates liver damage in mouse with HBV-associated ACLF, which contributes to repress miR-146a-5p maturation. Thus, this article suggests a novel therapeutic avenue to prevent and treat HBV-associated ACLF.

Keywords: Acute-on-chronic liver failure; Hepatitis B virus; Liver cell damage; METTL3; m(6)A methylation; miR-146a-5p.

PubMed Disclaimer

LinkOut - more resources