The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study
- PMID: 3497158
- PMCID: PMC2114915
- DOI: 10.1083/jcb.105.1.49
The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study
Abstract
We have examined the structure of calsequestrin in three-dimensional images from deep-etched rotary-replicated freeze fractures of skeletal muscle fibers. We selected a fast-acting muscle because the sarcoplasmic reticulum has an orderly disposition and is rich in internal membranes. Calsequestrin forms a network in the center of the terminal cisternae and is anchored to the sarcoplasmic reticulum membrane, with preference for the junctional portion. The anchorage is responsible for maintaining calsequestrin in the region of the sarcoplasmic reticulum close to the calcium-release channels, and it corroborates the finding that calsequestrin and the spanning protein of the junctional feet may interact with each other in the junctional membrane. Anchoring filaments may be composed of a protein other than calsequestrin.
Similar articles
-
Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.J Cell Biol. 1984 Sep;99(3):875-85. doi: 10.1083/jcb.99.3.875. J Cell Biol. 1984. PMID: 6147356 Free PMC article.
-
Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence.J Cell Biol. 1979 Feb;80(2):372-84. doi: 10.1083/jcb.80.2.372. J Cell Biol. 1979. PMID: 156730 Free PMC article.
-
Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.J Cell Biol. 1988 Dec;107(6 Pt 2):2587-600. doi: 10.1083/jcb.107.6.2587. J Cell Biol. 1988. PMID: 2849609 Free PMC article.
-
Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.Clin Exp Pharmacol Physiol. 2009 Mar;36(3):340-5. doi: 10.1111/j.1440-1681.2008.05094.x. Clin Exp Pharmacol Physiol. 2009. PMID: 19278523 Review.
-
Calsequestrin and the calcium release channel of skeletal and cardiac muscle.Prog Biophys Mol Biol. 2004 May;85(1):33-69. doi: 10.1016/j.pbiomolbio.2003.07.001. Prog Biophys Mol Biol. 2004. PMID: 15050380 Review.
Cited by
-
High resolution ultrastructural mapping of total calcium: electron spectroscopic imaging/electron energy loss spectroscopy analysis of a physically/chemically processed nerve-muscle preparation.Proc Natl Acad Sci U S A. 1996 May 14;93(10):4799-803. doi: 10.1073/pnas.93.10.4799. Proc Natl Acad Sci U S A. 1996. PMID: 8643483 Free PMC article.
-
Glycosylation of skeletal calsequestrin: implications for its function.J Biol Chem. 2012 Jan 27;287(5):3042-50. doi: 10.1074/jbc.M111.326363. Epub 2011 Dec 14. J Biol Chem. 2012. PMID: 22170046 Free PMC article.
-
Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of 170 kDa Ca(2+)- and low-density-lipoprotein-binding protein in rabbit skeletal muscle.Biochem J. 1991 Aug 1;277 ( Pt 3)(Pt 3):825-32. doi: 10.1042/bj2770825. Biochem J. 1991. PMID: 1872815 Free PMC article.
-
The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers.Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6142-6. doi: 10.1073/pnas.89.13.6142. Proc Natl Acad Sci U S A. 1992. PMID: 1631100 Free PMC article.
-
Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip.J Cell Biol. 1991 May;113(4):779-91. doi: 10.1083/jcb.113.4.779. J Cell Biol. 1991. PMID: 1827445 Free PMC article.